53 research outputs found

    Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things

    Get PDF
    Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage requirements. Additionally, these schemes are vulnerable to quantum computing attacks. Therefore, research focusing on designing an efficient post-quantum CLSC scheme is still far-reaching. In this work, we propose PQ-CLSC, a novel post-quantum CLSC scheme that ensures quantum safety for IoMT. Our proposed design facilitates secure transmission of medical data between physicians and patients, effectively validating user legitimacy and minimizing the risk of private information leakage. To achieve this, we leverage lattice sampling algorithms and hash functions to generate the particial secret key and then employ the sign-then-encrypt method to obtain the ciphertext. We also formally and prove the security of our design, including indistinguishability against chosen-ciphertext attacks (IND-CCA2) and existential unforgeability against chosen-message attacks (EU-CMA) security. Finally, through comprehensive performance evaluation, our signcryption overhead is only 30%-55% compared to prior arts, while our computation overhead is just around 45% of other existing schemes. The evaluation results demonstrate that our solution is practical and efficient

    Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium acetobutylicum</it>, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain <it>C. acetobutylicum </it>EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain <it>C. acetobutylicum </it>ATCC 824.</p> <p>Results</p> <p>Complete genome of <it>C. acetobutylicum </it>EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, <it>spo0A </it>and <it>adhEII </it>have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824), a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose.</p> <p>Conclusions</p> <p>Comparative analysis of <it>C. acetobutylicum </it>hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of <it>C. acetobutylicum </it>for more effective butanol production.</p

    Degree Planning with PLAN-BERT: Multi-Semester Recommendation Using Future Courses of Interest

    No full text
    Planning scenarios involving user pre-specified items present themselves frequently in recommender system domains. Although next-item and next-basket recommendation has been a focus of prior research, multiple consecutive item or basket approaches are needed for planning. No prior work has leveraged pre-specified future reference items to improve this type of challenging consecutive prediction task at inference time. PLAN-BERT is the first to accommodate this general planning scenario. It does so by contributing novel modifications that take inspiration from the masked training and contextual embedding of self-attention models. To test the model, we use the domain of student academic degree planning, in which students’ past course histories and future pre-specified courses of interest are used to fill in the remainder of their curriculum. Our offline analyses consist of 15 million historic course enrollments at 20 institutions and an online evaluation conducted at one of the institutions. Our results show that PLAN-BERT outperforms existing models including BERT, BiLSTM, and a UserKNN baseline, with small numbers of future reference items substantially improving accuracy. Significant results from our online evaluation show PLAN-BERT to be strongest in students' perceptions of personalization

    Hyperprogressive disease during PD-1 blockade in patients with advanced pancreatic cancer

    No full text
    The occurrence of markedly accelerated tumor growth during immunotherapy is considered a new mode of progression called hyperprogressive disease (HPD) and its impact on pancreatic cancer (PC) patients receiving immunotherapy is unknown. In this study, we described and explored the incidence, prognosis and predictors of HPD in patients with advanced PC treated with programmed cell death-1 (PD-1) inhibitors. We retrospectively analyzed clinicopathological data from 104 patients with advanced pancreatic cancer who were treated with PD-1 inhibitors at our institution during 2015–2020 and identified 10 (9.6%) patients with HPD. Overall survival (OS) was significantly poorer in patients with HPD compared to patients with progressive disease (PD) (median OS: 5.6 vs. 3.6 months, p 2, liver metastasis, antibiotic therapy within 21 days before immunotherapy (Abx B21), hemoglobin (Hb) level 2. Subgroup analysis showed that high levels of CA19-9 at baseline were associated with the development of subsequent HPD (p = .024) and a worse prognosis (mOS:16.2 months vs. 6.1 months, p < .01). Our study demonstrated that HPD may occur in PC patients treated with PD-1 inhibitors and is associated with several clinicopathological characteristics and poor prognosis. The baseline tumor marker CA19-9 may be one of the early predictors of HPD development in PC patients receiving immunotherapy

    Broadband and Incident-Angle-Modulation Near-Infrared Polarizers Based on Optically Anisotropic SnSe

    No full text
    Optical anisotropy offers an extra degree of freedom to dynamically and reversibly regulate polarizing optical components, such as polarizers, without extra energy consumption and with high modulating efficiency. In this paper, we theoretically and numerically design broadband and incident-angle-modulation near-infrared polarizers, based on the SnSe, whose optical anisotropy is quantitatively evaluated by the complete dielectric tensor, complex refractive index tensor, and derived birefringence (~|Δn|max = 0.4) and dichroism (~|Δk|max = 0.4). The bandwidth of a broadband polarizer is 324 nm, from 1262 nm to 1586 nm, with an average extinction ratio above 23 dB. For the incident-angle-modulation near-infrared polarizer, the high incident angles dynamically and reversibly modulate its working wavelength with a maximum extinction ratio of 71 dB. Numerical simulations and theoretical calculations reveal that the considerable absorption for p light and continuously and relatively low absorption of s light lead to the broadband polarizer, while the incident-angle-modulation one mainly arises from the blue shift of corresponding wavelength of p light’s minimum reflectance. The proposed novel design of polarizers based on SnSe are likely to be mass-produced and integrated into an on-chip system, which opens up a new thought to design polarizing optical components by utilizing other low-symmetry materials
    corecore