4,168 research outputs found

    Initial fixation placement in face images is driven by top-down guidance

    Get PDF
    The eyes are often inspected first and for longer period during face exploration. To examine whether this saliency of the eye region at the early stage of face inspection is attributed to its local structure properties or to the knowledge of its essence in facial communication, in this study we investigated the pattern of eye movements produced by rhesus monkeys (Macaca mulatta) as they free viewed images of monkey faces. Eye positions were recorded accurately using implanted eye coils, while images of original faces, faces with scrambled eyes, and scrambled faces except for the eyes were presented on a computer screen. The eye region in the scrambled faces attracted the same proportion of viewing time and fixations as it did in the original faces, even the scrambled eyes attracted substantial proportion of viewing time and fixations. Furthermore, the monkeys often made the first saccade towards to the location of the eyes regardless of image content. Our results suggest that the initial fixation placement in faces is driven predominantly by ‘top-down’ or internal factors, such as the prior knowledge of the location of “eyes” within the context of a face

    Crystal structure and properties of electroless silver plating on polyester fabric

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Synthesis and application of environmental friendly waterborne polyurethane

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    Get PDF
    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum efficiencies of polycrystalline perovskite films from 1% to 89%, with carrier lifetimes of 32 μs and diffusion lengths of 77 μm, comparable with perovskite single crystals. Remarkably, the surface recombination velocity of holes in the treated films is 0.4 cm/s, approaching the values for fully passivated crystalline silicon, which has the lowest values for any semiconductor to date. The enhancements translate to solar cell power-conversion efficiencies of 19.2%, with a near-instant rise to stabilized power output, consistent with suppression of ion migration. We propose a mechanism in which light creates superoxide species from oxygen that remove shallow surface states. The work reveals an industrially scalable post-treatment capable of producing state-of-the-art semiconducting films.S.D.S. has received funding from the European Union's Seventh Framework Program (Marie Curie Actions) under REA grant number PIOF-GA-2013-622630. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation (NSF) under award number MDR – 1419807. R.B. acknowledges support from the MIT Undergraduate Research Opportunities Program (UROP). A.O. acknowledges support from the NSF under grant no. 1605406 (EP/L000202). D.G. acknowledges the China Scholarship Council for funding, file no. 201504910812. The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) under EP/P02484X/1 and the Programme Grant EP/M005143/1. M.S.I. and C.E. acknowledge support from the EPSRC Program grant on Energy Materials (EP/KO16288) and the Archer HPC/MCC Consortium (EP/L000202). E.M.H. gratefully acknowledges the Netherlands Organization for Scientific Research (NWO) Echo number 712.014.007 for funding. The work was also partially supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center. The authors thank Mengfei Wu and Marc Baldo for access to an integrating sphere, Jay Patel and Michael Johnston for EQE verifications, and Eli Yablonovitch and Luis Pazos-Outón for helpful discussion

    Interactive Multi-Stage Robotic Positioner for Intra-Operative MRI-Guided Stereotactic Neurosurgery

    Get PDF
    Magnetic resonance imaging (MRI) demonstrates clear advantages over other imaging modalities in neurosurgery with its ability to delineate critical neurovascular structures and cancerous tissue in high-resolution 3D anatomical roadmaps. However, its application has been limited to interventions performed based on static pre/post-operative imaging, where errors accrue from stereotactic frame setup, image registration, and brain shift. To leverage the powerful intra-operative functions of MRI, e.g., instrument tracking, monitoring of physiological changes and tissue temperature in MRI-guided bilateral stereotactic neurosurgery, a multi-stage robotic positioner is proposed. The system positions cannula/needle instruments using a lightweight (203 g) and compact (Ø97 × 81 mm) skull-mounted structure that fits within most standard imaging head coils. With optimized design in soft robotics, the system operates in two stages: i) manual coarse adjustment performed interactively by the surgeon (workspace of ±30°), ii) automatic fine adjustment with precise (<0.2° orientation error), responsive (1.4 Hz bandwidth), and high-resolution (0.058°) soft robotic positioning. Orientation locking provides sufficient transmission stiffness (4.07 N/mm) for instrument advancement. The system's clinical workflow and accuracy is validated with lab-based (<0.8 mm) and MRI-based testing on skull phantoms (<1.7 mm) and a cadaver subject (<2.2 mm). Custom-made wireless omni-directional tracking markers facilitated robot registration under MRI

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Determinants of cognitive function in childhood: A cohort study in a middle income context

    Get PDF
    BACKGROUND: There is evidence that poverty, health and nutrition affect children's cognitive development. This study aimed to examine the relative contributions of both proximal and distal risk factors on child cognitive development, by breaking down the possible causal pathways through which poverty affects cognition. METHODS: This cohort study collected data on family socioeconomic status, household and neighbourhood environmental conditions, child health and nutritional status, psychosocial stimulation and nursery school attendance. The effect of these on Wechsler Pre-School and Primary Scale of Intelligence scores at five years of age was investigated using a multivariable hierarchical analysis, guided by the proposed conceptual framework. RESULTS: Unfavourable socioeconomic conditions, poorly educated mother, absent father, poor sanitary conditions at home and in the neighbourhood and low birth weight were negatively associated with cognitive performance at five years of age, while strong positive associations were found with high levels of domestic stimulation and nursery school attendance. CONCLUSION: Children's cognitive development in urban contexts in developing countries could be substantially increased by interventions promoting early psychosocial stimulation and preschool experience, together with efforts to prevent low birth weight and promote adequate nutritional status
    corecore