39 research outputs found

    SCA-PVNet: Self-and-Cross Attention Based Aggregation of Point Cloud and Multi-View for 3D Object Retrieval

    Full text link
    To address 3D object retrieval, substantial efforts have been made to generate highly discriminative descriptors of 3D objects represented by a single modality, e.g., voxels, point clouds or multi-view images. It is promising to leverage the complementary information from multi-modality representations of 3D objects to further improve retrieval performance. However, multi-modality 3D object retrieval is rarely developed and analyzed on large-scale datasets. In this paper, we propose self-and-cross attention based aggregation of point cloud and multi-view images (SCA-PVNet) for 3D object retrieval. With deep features extracted from point clouds and multi-view images, we design two types of feature aggregation modules, namely the In-Modality Aggregation Module (IMAM) and the Cross-Modality Aggregation Module (CMAM), for effective feature fusion. IMAM leverages a self-attention mechanism to aggregate multi-view features while CMAM exploits a cross-attention mechanism to interact point cloud features with multi-view features. The final descriptor of a 3D object for object retrieval can be obtained via concatenating the aggregated features from both modules. Extensive experiments and analysis are conducted on three datasets, ranging from small to large scale, to show the superiority of the proposed SCA-PVNet over the state-of-the-art methods

    Baichuan 2: Open Large-scale Language Models

    Full text link
    Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan

    Investigations on the Thermodynamics Characteristics, Thermal and Dielectric Properties of Calcium-Activated Zinc-Containing Metallurgical Residues

    No full text
    An activate pretreatment of zinc-containing metallurgical residues were proposed by adding CaO and introducing microwave heating approach into the CaO activation pretreatment process to realize the conversion of refractory ore phases into pre-treated ore phase. Thermodynamic characteristics analysis indicated that adding CaO can realize the conversion of refractory ore phases, with the same effect as the carbon additives. Thermal conductivity properties analysis denoted that the thermal conductivity properties of ZnS and ZnFe2O4 were relatively poor. Meanwhile, the thermal conductivity properties of the residues sample added with 25% CaO were significantly superior to the residues added with other CaO contents, with the maximum specific heat value of 1.348 J/g·K at 350 °C. Dielectric properties analysis highlighted that adding CaO with the dielectric constant properties significantly higher than that of other substances can enhance the microwave absorption capacity of zinc-containing residues. The decrease in dielectric loss and loss tangent value with the increase of temperature and the residues having large microwave penetration depth guaranteed to obtain better uniformity of microwave heating. Furthermore, adding 25% CaO promoted the microwave penetration depth of the residues sample increased in the range of 300–500 °C. This work can lay a theoretical research foundation for solving the key difficulty for efficient Zn recovery from complex zinc-containing metallurgical residues

    Enhanced Leaching of Zinc from Zinc-Containing Metallurgical Residues via Microwave Calcium Activation Pretreatment

    No full text
    Given the shortage of zinc resource, the low utilisation efficiency of secondary zinc resource, and the crucial problem that the synchronous dissolution of zinc from different mineral phases, an activation pretreatment method merged with calcium activation and microwave heating approach was proposed to enhance the zinc leaching from complex encapsulated zinc-containing metallurgical residues (ZMR). Results indicated that under the optimal pretreatment conditions, including microwave activation temperature of 400 °C, CaO addition of 25% and activation time of 20 min, the zinc leaching rate reached 91.67%, which was 3.9% higher than that by conventional roasting pretreatment. Meanwhile, microwave heating presents excellent treatment effects, manifested by the zinc leaching rates, all exceeding that of conventional roasting under the same conditions, while the process temperature is decreased by 200 °C. In addition, XRD and SEM-EDS analysis denoted that microwave calcification pretreatment can effectively promote the transformation of the refractory zinc minerals like Zn2SiO4 and ZnFe2O4 into the easily leachable zinc oxides. The distinctive selective heating characteristics of microwave heating strengthened the dissociation of mineral inclusion, and the generated cracks increased the interfacial reaction area and further enhancing the leaching reaction of zinc from ZMR

    The adsorption removal of tannic acid by regenerated activated carbon from the spent catalyst of vinyl acetate synthesis

    No full text
    Abstract Activated carbon can remove humic acid organic pollutants to reduce trihalomethanes carcinogens generated in the chlorination disinfection process. In this study, regenerated activated carbon (RAC) was recycled from the spent catalyst of vinyl acetate synthesis via a thermal regeneration method. The influences of regeneration temperature and time on the regeneration rate and iodine adsorption value of the RAC samples were determined, the nitrogen adsorption isotherms and pore structure characteristics of RAC samples were characterised, and the effects of RAC additive amount, pH, adsorption temperature, and time on tannic acid removal rate were investigated. Results indicated that regeneration time and temperature presented pronounced influences on the regeneration rate and iodine adsorption performance of RAC samples. For the RAC sample optimally prepared at 900 °C for 2 h, the iodine adsorption value, BET surface area, and the regeneration rate were 817 mg/g, 1346 m²/g, and 65.9%, respectively. Under the optimal conditions including RAC additive amount of 3.5 g, temperature of 25 °C, adsorption time of 200 min and pH of 4.0, and tannic acid concentration of 50 mg/L, the tannic acid removal rate reached 89.96%. The adsorption kinetic characteristics for tannic acid onto RAC matched to Pseudo-second-order model, meanwhile the analysis of Boyd dynamic equation and Intraparticle diffusion model denoted the absorption process was mainly controlled by film diffusion. This work provides a technology aiming at the joint treatment of hazardous waste resources, which involve the regeneration activated carbon from spent catalysts and the absorption removal of tannic acid organic pollutants

    Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering

    Get PDF
    BACKGROUND: Osteochondral interface regeneration is challenging for functional and integrated cartilage repair. Various layered scaffolds have been used to reconstruct the complex interface, yet the influence of the permeability of the layered structure on cartilage defect healing remains largely unknown. METHODS: We designed and fabricated a novel bilayered scaffold using articular cartilage extracellular matrix (ACECM) and hydroxyapatite (HAp), involving a porous, oriented upper layer and a dense, mineralised lower layer. By optimising the HAp/ACECM ratio, differing pore sizes and porosities were obtained simultaneously in the two layers. To evaluate the effects of permeability on cell behaviour, rabbit chondrocytes were seeded. RESULTS: Morphological observations demonstrated that a gradual interfacial region was formed with pore sizes varying from 128.2 ± 20.3 to 21.2 ± 3.1 μm. The permeability of the bilayered scaffold decreased with increasing compressive strain and HAp content. Mechanical tests indicated that the interface was stable to bearing compressive and shear loads. Accordingly, the optimum HAp/ACECM ratio (7 w/v%) in the layer to mimic native calcified cartilage was found. Chondrocytes could not penetrate the interface and resided only in the upper layer, where they showed high cellularity and abundant matrix deposition. CONCLUSIONS: Our findings suggest that a bilayered scaffold with low permeability, rather than complete isolation, represents a promising candidate for osteochondral interface tissue engineering

    Removal of Uranium from Uranium Plant Wastewater Using Zero-Valent Iron in an Ultrasonic Field

    No full text
    Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of 2,772.23 μg/L. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results

    Fabrication of Tissue-Engineered Cartilage Using Decellularized Scaffolds and Chondrocytes

    No full text
    In this paper, we aim to explore the application value of tissue engineering for the construction of artificial cartilage in vitro. Chondrocytes from healthy porcine articular cartilage tissue were seeded on articular cartilage extracellular matrix (ACECM) scaffolds and cultivated. Type II collagen immunofluorescent staining was used to assess secretion from the extracellular matrix. Chondrocytes, which were mainly polygonal and cobblestone-shaped, were inoculated on ACECM-oriented scaffolding for 7 days, and the neo-tissue showed translucent shape and toughness. Using inverted and fluorescence microscopy, we found that chondrocytes on the scaffolds performed well in terms of adhesion and growth, and they secreted collagen type II. Moreover, the porcine ACECM scaffolds had good biocompatibility. The inflammatory cell detection, cellular immune response assay and humoral immune response assay showed porcine ACECM scaffolds were used for xenotransplantation without significant immune inflammatory response. All these findings reveal that ACECM-oriented scaffold is an ideal natural biomaterial for cartilage tissue engineering

    Enhanced leaching of zinc from zinc-containing metallurgical residues via microwave calcium activation pretreatment

    No full text
    Abstract Given the shortage of zinc resource, the low utilisation efficiency of secondary zinc resource, and the crucial problem that the synchronous dissolution of zinc from different mineral phases, an activation pretreatment method merged with calcium activation and microwave heating approach was proposed to enhance the zinc leaching from complex encapsulated zinc-containing metallurgical residues (ZMR). Results indicated that under the optimal pretreatment conditions, including microwave activation temperature of 400 °C, CaO addition of 25% and activation time of 20 min, the zinc leaching rate reached 91.67%, which was 3.9% higher than that by conventional roasting pretreatment. Meanwhile, microwave heating presents excellent treatment effects, manifested by the zinc leaching rates, all exceeding that of conventional roasting under the same conditions, while the process temperature is decreased by 200 °C. In addition, XRD and SEM-EDS analysis denoted that microwave calcification pretreatment can effectively promote the transformation of the refractory zinc minerals like Zn₂SiO₄ and ZnFe₂O₄ into the easily leachable zinc oxides. The distinctive selective heating characteristics of microwave heating strengthened the dissociation of mineral inclusion, and the generated cracks increased the interfacial reaction area and further enhancing the leaching reaction of zinc from ZMR
    corecore