552,795 research outputs found
A Subspace Shift Technique for Nonsymmetric Algebraic Riccati Equations
The worst situation in computing the minimal nonnegative solution of a
nonsymmetric algebraic Riccati equation associated with an M-matrix occurs when
the corresponding linearizing matrix has two very small eigenvalues, one with
positive and one with negative real part. When both these eigenvalues are
exactly zero, the problem is called critical or null recurrent. While in this
case the problem is ill-conditioned and the convergence of the algorithms based
on matrix iterations is slow, there exist some techniques to remove the
singularity and transform the problem to a well-behaved one. Ill-conditioning
and slow convergence appear also in close-to-critical problems, but when none
of the eigenvalues is exactly zero the techniques used for the critical case
cannot be applied.
In this paper, we introduce a new method to accelerate the convergence
properties of the iterations also in close-to-critical cases, by working on the
invariant subspace associated with the problematic eigenvalues as a whole. We
present a theoretical analysis and several numerical experiments which confirm
the efficiency of the new method
- …