32 research outputs found
Malthus revisited
Although mineral resources are non-renewable and unevenly distributed, global supply has
so far kept up with demand. However, mankind is now moving into an era of unprecedented
population growth and environmental change. As demand continues to rise and the need
to mitigate and adapt to environmental change becomes more pressing can the abundant
mineral supply we have enjoyed be sustained
Decarbonising the automotive sector: a primary raw material perspective on targets and timescales
Decarbonisation of the automotive sector will require increased amounts of raw materials such as lithium, cobalt, nickel and rare earth elements. Consequently, it is crucial to assess whether supply will be able to meet forecast demand within the required timescale. The automotive sector relies on complex global supply chains comprising four tiers. We have developed an integrated timeline from tier 4 (supply of raw materials) through to tier 1, the production of electric vehicles (EVs). Numerous factors, mainly economic, political, social and environmental, influence the duration of tier 4 leading to considerable variation between projects. However, our analysis demonstrates that it commonly takes more than 30 years from initial exploration to EV production. Tier 4, which is often neglected by the automotive industry, may account for 20 years of that period. This suggests that raw material supply is unlikely to match the projected demand from electrification of the automotive sector up to 2030. Reducing the duration of tier 4 will be difficult, although governments and industry can mitigate supply risks in various ways. These include multi-disciplinary international research across the supply chain and the transformation of research findings into policy and best practice. Supply chain convergence, with businesses across the supply chain working to develop long-term plans for secure and sustainable supply, will also be beneficial. In addition, global stakeholders should work together to resolve ESG challenges to supply. All these measures depend on the availability of researchers and industry personnel with appropriate skills and knowledge
The structure and petrology of the Cnoc nan Cuilean Intrusion, Loch Loyal Syenite Complex, NW Scotland
In NW Scotland, several alkaline intrusive complexes of Silurian age intrude the Caledonian orogenic front. The most northerly is the Loch Loyal Syenite Complex, which is divided into three separate intrusions (Ben Loyal, Beinn Stumanadh and Cnoc nan Cuilean). Mapping of the Cnoc nan Cuilean intrusion shows two main zones: a Mixed Syenite Zone (MZ) and a Massive Leucosyenite Zone (LZ), with a gradational contact. The MZ forms a lopolith, with multiple syenitic lithologies, including early basic melasyenites and later felsic leucosyenites. Leucosyenite melts mixed and mingled with melasyenites, resulting in extreme heterogeneity within the MZ. Continued felsic magmatism resulted in formation of the relatively homogeneous LZ, invading western parts of the MZ and now forming the topographically highest terrane. The identification of pegmatites, microgranitic veins and unusual biotite-magnetite veins demonstrates the intrusion's complex petrogenesis. Cross-sections have been used to create a novel 3D GoCad⢠model contributing to our understanding of the intrusion. The Loch Loyal Syenite Complex is known to have relatively high concentrations of rare earth elements (REEs), and thus the area has potential economic and strategic value. At Cnoc nan Cuilean, abundant REE-bearing allanite is present within melasyenites of the MZ. Extensive hydrothermal alteration of melasyenites here formed steeply dipping biotite-magnetite veins, most enriched in allanite and other REE-bearing accessories. This study has thus identified the area of greatest importance for further study of REE enrichment processes in the Cnoc nan Cuilean intrusion
Briefing: minerals security of supply: a geological perspective
For more than 200 years many authors have expressed concern about the adequacy of natural resources to support economic growth and the spread of prosperity. Most of these predictions, however, are unnecessarily alarmist and are based on over-simplistic analysis of mineral reserve and consumption data. In fact, despite rapidly increasing demand, continued scientific and technological innovations have ensured that economic development has never been constrained by lack of mineral resources. However, âcritical metalsâ, so-called because of their growing importance in new and green technologies and the high risk of supply shortage, present a particular problem because our knowledge of them is limited and many are by-products of major industrial metals. There is now an urgent need for research on all aspects of the lifecycles of these metals to ensure their future availability
Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi
Stable (C and O) isotope data from carbonates are one of the most important methods used to infer genetic processes in carbonatites. However despite their ubiquitous use in geological studies, it is suspected that carbonates are susceptible to dissolution-reprecipitation and isotopic resetting, especially in shallow intrusions, and may not be the best records of either igneous or hydrothermal processes. Apatite, however, should be much less susceptible to these resetting problems but has not been used for O isotope analysis. In this contribution, a novel bulk-carbonatite method for the analysis of O isotopes in the apatite PO4 site demonstrates a more robust record of stable isotope values. Analyses of apatite from five carbonatites with magmatic textures establishes a preliminary Primary Igneous Apatite (PIA) field of δ18O = + 2.5 to + 6.0Ⱐ(VSMOW), comparable to Primary Igneous Carbonatite (PIC) compositions from carbonates.
Carbonate and apatite stable isotope data are compared in 10 carbonatite samples from Songwe Hill, Malawi. Apatite is heavy rare earth element (HREE) enriched at Songwe and, therefore, oxygen isotope analyses of this mineral are ideal for understanding HREE-related mineralisation in carbonatites. Carbonate C and O isotope ratios show a general trend, from early to late in the evolution, towards higher δ18O values (+ 7.8 to + 26.7â°, VSMOW), with a slight increase in δ13C (â 4.6 to â 0.1â°, VPDB). Oxygen isotope ratios from apatite show a contrary trend, decreasing from a PIA field towards more negative values (+ 2.5 to â 0.7â°, VSMOW). The contrasting results are interpreted as the product of the different minerals recording fluid interaction at different temperatures and compositions. Modelling indicates the possibility of both a CO2 rich fluid and mixing between meteoric and deuteric waters. A model is proposed where brecciation leads to depressurisation and rapid apatite precipitation. Subsequently, a convection cell develops from a carbonatite, interacting with surrounding meteoric water. REE are likely to be transported in this convection cell and precipitate owing to decreasing salinity and/or temperature
REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite
Compared to all published data from carbonatites and granitoids, the fluorapatite compositions in the Songwe Hill carbonatite, determined by EPMA and LA ICP-MS, have the highest heavy (H)REE concentration of any carbonatite apatite described so far. A combination of this fluorapatite and the REE fluorocarbonates, synchysite-(Ce) and parisite-(Ce), which are the other principal REE bearing minerals at Songwe, gives a REE deposit with a high proportion of Nd and a higher proportion of HREE (EuâLu including Y) than most other carbonatites. Since Nd and HREE are currently the most sought REE for commercial applications, the conditions that give rise to this REE profile are particularly important to understand. Multiple apatite crystallisation stages have been differentiated texturally and geochemically at Songwe and fluorapatite is divided into five different types (Ap-0â4). While Ap-0 and Ap-1 are typical of apatite found in fenite and calcite-carbonatite, Ap-2, -3 and -4 are texturally atypical of apatite from carbonatite and are progressively HREE-enriched in later paragenetic stages. Ap-3 and Ap-4 exhibit anhedral, stringer-like textures and their REE distributions display an Y anomaly. These features attest to formation in a hydrothermal environment and fluid inclusion homogenisation temperatures indicate crystallisation occurred between 200â350 °C. Ap-3 crystallisation is succeeded by a light (L)REE mineral assemblage of synchysite-(Ce), strontianite and baryte. Finally, late-stage Ap-4 is associated with minor xenotime-(Y) mineralisation and HREE-enriched fluorite. Fluid inclusions in the fluorite constrain the minimum HREE mineralisation temperature to approximately 160 °C. A model is suggested where sub-solidus, carbonatite-derived, (carbo)-hydrothermal fluids remobilise and fractionate the REE. Chloride or fluoride complexes retain LREE in solution while rapid precipitation of apatite, owing to its low solubility, leads to destabilisation of HREE complexes and substitution into the apatite structure. The LREE are retained in solution, subsequently forming synchysite-(Ce). This model will be applicable to help guide exploration in other carbonatite complexes
Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes
The Tundulu and Kangankunde carbonatite complexes in the Chilwa Alkaline Province, Malawi, contain late-stage, apatite-rich lithologies termed quartz-apatite rocks. Apatite in these rocks can reach up to 90 modal% and displays a distinctive texture of turbid cores and euhedral rims. Previous studies of the paragenesis and rare earth element (REE) content of the apatite suggest that heavy REE (HREE)-enrichment occurred during the late-stages of crystallization. This is a highly unusual occurrence in intrusions that are otherwise light REE (LREE) enriched. In this contribution, the paragenesis and formation of the quartz-apatite rocks from each intrusion is investigated and re-evaluated, supported by new electron microprobe (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data to better understand the mechanism of HREE enrichment. In contrast to the previous work at Tundulu, we recognize three separate stages of apatite formation, comprising an âoriginalâ euhedral apatite, âturbidâ apatite, and âovergrowthsâ of euhedral late apatite. The crystallization of synchysite-(Ce) is interpreted to have occurred subsequent to all phases of apatite crystallization. The REE concentrations and distributions in the different minerals vary, but generally higher REE contents are found in later-stage apatite generations. These generations are also more LREE-enriched, relative to apatite that formed earlier. A similar pattern of increasing LREE-enrichment and increased REE concentrations toward later stages of the paragenetic sequence is observed at Kangankunde, where two generations of apatite are observed, the second showing higher REE concentrations, and relatively higher LREE contents.
The changing REE distribution in the apatite, from early to late in the paragenetic sequence, is interpreted to be caused by a combination of dissolution-reprecipitation of the original apatite and the preferential transport of the LREE complexes by F- and Cl-bearing hydrothermal fluids. Successive pulses of these fluids transport the LREE out of the original apatite, preferentially re-precipitating it on the rim. Some LREE remained in solution, precipitating later in the paragenetic sequence, as synchysite-(Ce). The presence of F is supported by the F content of the apatites, and presence of REE-fluorcarbonates. Cl is not detected in the apatite structure, but the role of Cl is suggested from comparison with apatite dissolution experiments, where CaCl2 or NaCl cause the reprecipitation of apatite without associated monazite. This study implies that, despite the typically LREE enriched nature of carbonatites, significant degrees of hydrothermal alteration can lead to certain phases becoming residually enriched in the HREE. Although at Tundulu the LREE-bearing products are re-precipitated relatively close to the REE source, it is possible that extensive hydrothermal activity in other carbonatite complexes could lead to significant, late-stage fractionation of the REE and the formation of HREE minerals.
Keywords: Apatite, carbonatite, rare earth elements, Chilwa Alkaline Province, Tundulu, Kangankunde, REE mobility, dissolution-reprecipitatio
Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 x 6 km) and slightly older (134.6 Âą 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1âC3). Early C1 carbonatite is scarce and is composed of mediumâcoarse-grained calcite carbonatite containing zircons with a UâPb age of 132.9 Âą 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.Thanks are due to A. Lemon, A. Zabula, C. Mcheka, I. Nkukumila (Mkango Resources Ltd.), Ă. Deady (BGS) and P. Armitage (Paul Armitage Consulting Ltd.) for logistical support and enthusiastic discussions in the field. This contribution benefitted from reviews by JindĹich KynickĂ˝ and Ray Macdonald, as well as anonymous reviewers, who we thank for their time and insightful comments. This work was funded by a NERC BGS studentship to SBF (NEE/J50318/1; S208), the NERC SoS RARE consortium (NE/M011429/1) and by Mkango Resources Ltd. AGG publishes with the permission of the Executive Director of the British Geological Survey (NERC)
Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi
Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 Ă 6 km) and slightly older (134.6 Âą 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1âC3). Early C1 carbonatite is scarce and is composed of mediumâcoarse-grained calcite carbonatite containing zircons with a UâPb age of 132.9 Âą 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites