16 research outputs found

    Colonic nitrite and immunoglobulin G levels in canine inflammatory bowel disease

    Get PDF
    http://www.worldcat.org/oclc/3281109

    Nutrient-stimulated insulin secretion in mouse islets is critically dependent on intracellular pH

    Get PDF
    BACKGROUND: Many mechanistic steps underlying nutrient-stimulated insulin secretion (NSIS) are poorly understood. The influence of intracellular pH (pH(i)) on insulin secretion is widely documented, and can be used as an investigative tool. This study demonstrates previously unknown effects of pH(i)-alteration on insulin secretion in mouse islets, which may be utilized to correct defects in insulin secretion. METHODS: Different components of insulin secretion in mouse islets were monitored in the presence and absence of forced changes in pH(i). The parameters measured included time-dependent potentiation of insulin secretion by glucose, and direct insulin secretion by different mitochondrial and non-mitochondrial secretagogues. Islet pH(i )was altered using amiloride, removal of medium Cl(-), and changing medium pH. Resulting changes in islet pH(i )were monitored by confocal microscopy using a pH-sensitive fluorescent indicator. To investigate the underlying mechanisms of the effects of pH(i)-alteration, cellular NAD(P)H levels were measured using two-photon excitation microscopy (TPEM). Data were analyzed using Student's t test. RESULTS: Time-dependent potentiation, a function normally absent in mouse islets, can be unmasked by a forced decrease in pH(i). The optimal range of pH(i )for NSIS is 6.4–6.8. Bringing islet pH(i )to this range enhances insulin secretion by all mitochondrial fuels tested, reverses the inhibition of glucose-stimulated insulin secretion (GSIS) by mitochondrial inhibitors, and is associated with increased levels of cellular NAD(P)H. CONCLUSIONS: Pharmacological alteration of pH(i )is a potential means to correct the secretory defect in non-insulin dependent diabetes mellitus (NIDDM), since forcing islet pH(i )to the optimal range enhances NSIS and induces secretory functions that are normally absent

    Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice

    Get PDF
    BACKGROUND: Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pH(i)). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pH(i )on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pH(i)-range, and is dramatically enhanced by forced intracellular acidification with DMA. Furthermore, DMA can enable certain non-secretagogues to stimulate insulin secretion, and induce time-dependent potentiation (TDP) of insulin release in mouse islets where this function is normally absent. The present study was performed to determine whether pH(i)-manipulation could correct the secretory defect in islets isolated from mice with type 2 diabetes. METHODS: Using two mouse models of type 2 diabetes, we compared a) pHi-regulation, and b) NSIS with and without treatment with amiloride derivatives, in islets isolated from diabetic mice and wild type mice. RESULTS: A majority of the islets from the diabetic mice showed a slightly elevated basal pH(i )and/or poor recovery from acid/base load. DMA treatment produced a significant increase of NSIS in islets from the diabetic models. DMA also enabled glucose to induce TDP in the islets from diabetic mice, albeit to a lesser degree than in normal islets. CONCLUSION: Islets from diabetic mice show some mis-regulation of intracellular pH, and their secretory capacity is consistently enhanced by DMA/amiloride. Thus, amiloride derivatives show promise as potential therapeutic agents for type 2 diabetes

    Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes

    Get PDF
    Islet transplantation is a promising therapeutic approach for type 1 diabetes. However, current success rates are low due to progressive graft failure in the long term and inability to monitor graft development in vivo. Other limitations include the necessity of initial invasive surgery and continued immunosuppressive therapy. We report an alternative transplantation strategy with the potential to overcome these problems. This technique involves transplantation of embryonic pancreatic tissue into recipients’ subcutaneous space, eliminating the need for invasive surgery and associated risks. Current results in mouse models of type 1 diabetes show that embryonic pancreatic transplants in the subcutaneous space can normalize blood glucose homeostasis and achieve extensive endocrine differentiation and vascularization. Furthermore, modern imaging techniques such as two-photon excitation microscopy (TPEM) can be employed to monitor transplants through the intact skin in a completely noninvasive manner. Thus, this strategy is a convenient alternative to islet transplantation in diabetic mice and has the potential to be translated to human clinical applications with appropriate modifications
    corecore