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Abstract

Skeletons are well-known representations that accommo-
date shape abstraction and qualitative shape matching. How-
ever, skeletons are sometimes unstable to compute and sen-
sitive to shape detail, thus making shape abstraction and
matching difficult. To address these problems, we propose a
principled framework that generates a simplified, abstracted
skeleton hierarchy by analyzing the quasi-stable points of a
Bayesian-inspired energy function. The resulting model is pa-
rameterized by both boundary and internal structure varia-
tions corresponding to object scale and abstraction dimen-
sions, and trades-off reconstruction accuracy and representa-
tion parsimony. Our experimental results show that the method
can produce useful multi-scale skeleton representations at a
variety of abstraction levels.

Keywords: Skeleton abstraction, qualitative shape matching,
shock graphs, energy minimization, constrained optimization,
minimum description length.

1. Introduction

Recent work on the indexing and matching of shock graphs
[12, 10, 5] has shown that similar shapes can lead to struc-
turally dissimilar shock graphs. In a traditional graph matching
framework that assumes a one-to-one node correspondence,
the induced large distance between the two graphs does not
reflect the similarity of their underlying shapes. A possible so-
lution to this problem is to try and compute a more stable set
of shock points from which the graph is constructed [4, 11],
or to identify unstable shock structure and exclude it from the
graph [1]. Still, these approaches commit to a single skeleton
representation, derived from a single boundary representation,
which can be sensitive to minor boundary perturbations. Such
perturbations may be caused by a number of factors, such as
small viewpoint changes, in the case of view-based 3-D recog-
nition. A small, salient branch in one view of an object may
be absent in a very similar view (or object). Depending on the
type and location of the corresponding node of that branch in
the shock graph, the shock graphs of the two views may still be
quite different. This further causes non-trivial problems when
matching the two shock graphs.

Another solution to graph matching is to edit one graph
so that it is isomorphic to the other. If large structural dif-
ferences between two graphs representing similar shapes can
be assigned a small edit cost, the similarity between the two
shapes can be maintained. This approach has been proposed
by Sebastian et al. [9], and provides effective matching in the
presence of such instabilities. However, this approach is very
costly, and assumes that a query and target have been identi-
fied. Although a hierarchical database partitioning framework
has been proposed [8], it still requires a linear search of the
prototypes.

A final class of solutions is to construct a multi-scale skele-
ton representation, such that among the set of shock graphs,
one per scale, one such graph is sufficiently close in structure
to its database target to facilitate effective indexing [10]. The
concept of multi-scale skeletons is not a new one. Ogniewicz
[6] proposed multi-scale skeletons for 2D polygonal shapes.
The saliency of a skeleton branch is given by the ‘collapsed
chord length’, or boundary length between the two Voronoi
sites generating that branch. The multiple scales are given
by upper thresholding the above saliency measure. Similar
multi-scale approaches have been proposed for raster objects
by Costa et al [3] and Telea & Van Wijk [13].

Siddiqi et al [11] computed the skeleton by simulating the
grassfire flow as a Hamilton-Jacobi equation. Skeleton points
are found by upper thresholding the divergence of the object’s
distance transform gradient. The skeleton points are labeled
with the time of shock formation, i.e. the local object width,
yielding a multi-scale notion. However, this multi-scale is re-
ported to be computationally expensive, and doesn’t preserve
the object topology [7].

Finally, Borgefors et al [2] have computed a hierarchical
skeleton by extracting skeletons of successively lower resolu-
tions of a given image. The implied scale-space is based on
the object width, similar to [11]. Explicit correspondences be-
tween skeletons on successive scales are computed to preserve
object topology (skeleton connectedness) across scales. For a
detailed comparison of the above, see [7].

In this paper, we propose a skeleton simplification method
that produces a hierarchy parameterized by both boundary and
internal structure parameters corresponding to object scale and
abstraction dimensions. In contrast to other approaches, we
compute the stable points of our augmented hierarchy using
an algorithm that performs optimal parameter inference. For a
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given skeleton, the optima are computed under a cost function
that trades off reconstruction accuracy and skeleton simplicity,
as suggested by a parsimony principle such as the minimum
description length (MDL).

2. Inference for Optimal Skeleton Abstraction

We formulate the hierarchical skeleton abstraction as infer-
ence over a two parameter family (b, s) representing bound-
ary b and internal structure s. Given an initial skeleton M d
the simplified skeleton under the generative transformation set
M(b, s) is an optimal simplification if it is both close to the
original M? but also has a simple structure in a MDL sense,
e.g. having as few branching points as possible. This trade-off
is implemented as a sum of data and MDL energy terms

E(b,s|M?) = E/(M?|M(b,5)) + E"(M(b, )

The low energy points of E can be located by exhaustive
search over the resulting 2d parameter space. We detail next
the model structure including the transformation set, the data
likelihood, and the MDL prior.

2.1 Skeleton Transformation Set (M)

The simplified skeleton generative transformation set
M(b, s) consists of both boundary b and internal structure s
simplifications of the original skeleton /. While the former
performs more classical boundary detail removal, the latter is
intended towards shape abstraction.

Boundary Simplification: We compute the skeleton
and its boundary simplification using the AFMM method [13].
In brief, the AFMM propagates an arc-length boundary pa-
rameterization U, in normal boundary direction, with constant
speed, by solving the Eikonal equation V1" = 1, with 7' = 0
on the boundary. The simplified skeleton containing the
branches corresponding to boundary details longer than s pix-
els is then given by upper thresholding max(0U/dx, 0U /dy)
with s. We use the AFMM, as it is robust for any value s > 2
pixels, delivers connected skeletons, and works in near real
time.

Structural Simplification: The structural simplification
M(s), parameterized by s, applies only to internal skeleton
branches. In the following, denote the neighbors of a point
x of the skeleton M by n(x,M) = n(x). Denote by
e(x®,M*,M?) = ¢(x*) the corresponding point, in the
original skeleton M ¢, of a point x* in the simplified skeleton
M*. Finally, denote by e(M) the set of all endpoints of M and
by b;(M) the two endpoints of the i** branch b; of M. M(s)
removes all internal branches shorter than s from M. When
removing each branch, the two sub-skeletons are reconnected
by translating one of them to join the other one. At this
point, the structural simplification is, strictly speaking, done.
However, this strategy causes large changes in the comparison

measure we use for the silhouettes (see §2.2), since all points
in the displaced sub-skeleton change their position. In order to
preserve the consistency of the skeleton and to minimize the
impact of the structural change, we relax (optimize) the points
in M?# according to the following cost function

FroMYy = % 3 (1% =yl =[x = Yegyo )

x*€EM* ysen(x*®)

with two hard constraints

X} =X, Ve(x]) € e(M?)
xj=x5, ifbi(M?) = {c(x}),c(x})} and b; is eliminated

The first constraint enforces a boundary condition on the
skeleton, i.e. keeps its endpoints fixed. The second constraint
ensures that the elimination of the internal branches is persis-
tent, i.e., these branches don’t reappear after the relaxation.
Without this constraint, the relaxation tends to stretch back the
simplified (removed) branches. To minimize the energy with
the above constraints, we use a spring embedder approach. Ev-
ery neighboring relation n(x) corresponds to an elastic spring.
We displace all points x towards their local energy minimum
with respect to their neighbors n(x), by sweeping all skele-
ton points in breadth-first order, starting from the simplifica-
tion places. This distributes the displacements in gradually
decreasing magnitude from the simplified branches to the end-
points. The process converges after a few hundred sweeps.

2.2 Likelihood Term (E%)

We first define the distance between two silhouettes S; and
S5 as

1

S S

Yo T(p.S) M)

PES1—S2

where T'(p,S) = minges || p — s || is the solution of the
Eikonal equation computed by the AFMM, i.e., the distance
transform of S (Sec. 2.1). The denominator in (1) normalizes
D between zero and one. Next, we define the likelihood term
as a symmetric distance sum between the silhouette induced
by the simplified skeleton S® = S(M(b, s)) and the original
silhouette S% = S(M?)

EYMYM(b,s)) =D(S*,8%) +D(S%,S%) (2
2.3 MDL Prior (E™%)

The MDL prior we chose encourages shapes that have a
simple skeleton. The simplest shape is the circle, whose skele-
ton is a point. We thus use a prior term that measures the ec-
centricity of a proposed simplification (other discrete measures
based, for example, on the number of branches, may be possi-

ble)
st = [T L]

3)
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where Area(S) is the area of a silhouette S and Per(S) is its
perimeter. The term ﬁ in (3) is the eccentricity of a circle, so

E™d s zero for circular shapes. In practice, we also normalize
E™d between zero and one by dividing it by the eccentricity
of the initial shape S¢.

3. Experiments

We have tested the proposed algorithm on a variety of sil-
houette images. In fig. 2, we show results from a larger set of
experiments involving biological shapes, here a bird, a horse
and a human hand. The first three rows show, from left to
right, the original and simplified silhouettes, as well as the cor-
responding skeletons and the distance transform of the simpli-
fied skeleton for an arbitrary choice of (b, s) parameter values.
Notice how the structural skeleton changes in column IV lead
to representations that better reflect our perceptual abstraction,
e.g. for the horse by removing the branch that connects the
back two legs to the spine, similarly the three leftmost bottom
branches of the bird and the upper branches corresponding to
the fingers of the palm. Notice that the structural changes do
not affect the overall aspect ratio of the figure (skeleton end-
points remain unchanged, see §2.1 for details). See also fig. 1
for a more quantitative evolution of the energy function and its
individual components, and note the trade-off between recon-
struction and structural parsimony terms. Interesting regions
of the plot are the ones before sample 150, where the energy
approaches a flat plateau and then starts increasing gently.

T T
09 L Reconstruction |
) -4 MDL Prior -------
08 | Total -------- .

07+ .
06 - .
05 o,
04 -

03
02|
01|

Energy

1
0 50 100 150 200 250 300
Parameter Space Sample Point

Figure 1. Different components of the energy
function for the horse in fig.2, sampled at
300 points in parameter space over the range
b=(15,800) with 30 samples and s=(0,90) with 10
samples, unfolded on the x axis.

The last two rows of fig.2 show an in-depth evolution of
the skeleton under the change of the (s, b) parameter pair. We
found that the configurations given by (s, b)=(0, 20), (0, 50),
(50,50) and (50,170) (not shown) are quasi-stable energy
points. Notice also that these stable points correspond to in-

tuitive abstractions, e.g., when all the four finger skeleton
branches have a common root. These will, in turn, lead to
shock graph-based representations with fewer spurious nodes,
therefore significantly simpler to match.

4. Conclusions

In this paper, we have presented a framework for multi-
scale skeleton simplification and abstraction. In order to ad-
dresses the instability of 2d skeletons to 3d viewpoint and mi-
nor shape deformation, we propose a framework that produces
a simplified, abstracted skeleton hierarchy by searching the
quasi-stable points of a Bayesian-inspired energy function, pa-
rameterized by boundary and internal structure variations and
trading-off reconstruction accuracy and representation parsi-
mony using an MDL principle. We give experimental results
that show the method can extract useful multi-scale skeleton
representations at various abstraction levels. Future and ongo-
ing work is exploring extensions to abstraction based on multi-
ple input skeletons, alternative MDL priors and skeleton clus-
tering methods, as well as multi-scale skeleton matching.
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Figure 2. Skeleton simplifications for different objects. First three rows, left to right: initial silhouette,
simplified silhouette, skeleton after boundary simplification, skeleton after internal structure simplifi-
cation, and distance transform of the simplified silhouette. Last two rows: initial silhouette (gray) and
skeleton and simplified silhouette and skeleton (black) for different s and b values.
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