91 research outputs found
A causal association between Accutane and IBD has yet to be established
A number of case reports have been published describing a possible association between isotretinoin (Accutane) and inflammatory bowel disease (IBD). We critically appraised the published literature on this association to assess whether the current literature supports a causal relationship between isotretinoin and IBD
Inflammation-Induced Acid Tolerance Genes gadAB in Luminal Commensal Escherichia coli Attenuate Experimental Colitis
ABSTRACT Dysregulated immune responses to commensal intestinal bacteria, including Escherichia coli , contribute to the development of inflammatory bowel diseases (IBDs) and experimental colitis. Reciprocally, E. coli responds to chronic intestinal inflammation by upregulating expression of stress response genes, including gadA and gadB . GadAB encode glutamate decarboxylase and protect E. coli from the toxic effects of low pH and fermentation acids, factors present in the intestinal lumen in patients with active IBDs. We hypothesized that E. coli upregulates gadAB during inflammation to enhance its survival and virulence. Using real-time PCR, we determined gadAB expression in luminal E. coli from ex-germfree wild-type (WT) and interleukin-10 (IL-10) knockout (KO) (IL-10 −/− ) mice selectively colonized with a commensal E. coli isolate (NC101) that causes colitis in KO mice in isolation or in combination with 7 other commensal intestinal bacterial strains. E. coli survival and host inflammatory responses were measured in WT and KO mice colonized with NC101 or a mutant lacking the gadAB genes (NC101Δ gadAB ). The susceptibility of NC101 and NC101Δ gadAB to killing by host antimicrobial peptides and their translocation across intestinal epithelial cells were evaluated using bacterial killing assays and transwell experiments, respectively. We show that expression of gadAB in luminal E. coli increases proportionately with intestinal inflammation in KO mice and enhances the susceptibility of NC101 to killing by the host antimicrobial peptide cryptdin-4 but decreases bacterial transmigration across intestinal epithelial cells, colonic inflammation, and mucosal immune responses. Chronic intestinal inflammation upregulates acid tolerance pathways in commensal E. coli isolates, which, contrary to our original hypothesis, limits their survival and colitogenic potential. Further investigation of microbial adaptation to immune-mediated inflammation may provide novel insights into the pathogenesis and treatment of IBDs
Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R signaling deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 development, and regulated the susceptibility to autoimmune inflammation
Inflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition
We tested the hypothesis that Crohn’s disease (CD)-related genetic polymorphisms involved in host innate immunity are associated with shifts in human ileum–associated microbial composition in a cross-sectional analysis of human ileal samples. Sanger sequencing of the bacterial 16S ribosomal RNA (rRNA) gene and 454 sequencing of 16S rRNA gene hypervariable regions (V1–V3 and V3–V5), were conducted on macroscopically disease-unaffected ileal biopsies collected from 52 ileal CD, 58 ulcerative colitis and 60 control patients without inflammatory bowel diseases (IBD) undergoing initial surgical resection. These subjects also were genotyped for the three major NOD2 risk alleles (Leu1007fs, R708W, G908R) and the ATG16L1 risk allele (T300A). The samples were linked to clinical metadata, including body mass index, smoking status and Clostridia difficile infection. The sequences were classified into seven phyla/subphyla categories using the Naïve Bayesian Classifier of the Ribosome Database Project. Centered log ratio transformation of six predominant categories was included as the dependent variable in the permutation based MANCOVA for the overall composition with stepwise variable selection. Polymerase chain reaction (PCR) assays were conducted to measure the relative frequencies of the Clostridium coccoides – Eubacterium rectales group and the Faecalibacterium prausnitzii spp. Empiric logit transformations of the relative frequencies of these two microbial groups were included in permutation-based ANCOVA. Regardless of sequencing method, IBD phenotype, Clostridia difficile and NOD2 genotype were selected as associated (FDR ≤0.05) with shifts in overall microbial composition. IBD phenotype and NOD2 genotype were also selected as associated with shifts in the relative frequency of the C. coccoides – E. rectales group. IBD phenotype, smoking and IBD medications were selected as associated with shifts in the relative frequency of F. prausnitzii spp. These results indicate that the effects of genetic and environmental factors on IBD are mediated at least in part by the enteric microbiota
Mouse Paneth cell antimicrobial function is independent of Nod2
ObjectiveAlthough polymorphisms of the NOD2 gene predispose to the development of ileal Crohn's disease, the precise mechanisms of this increased susceptibility remain unclear. Previous work has shown that transcript expression of the Paneth cell (PC) antimicrobial peptides (AMPs) α-defensin 4 and α-defensin-related sequence 10 are selectively decreased in Nod2−/− mice. However, the specific mouse background used in this previous study is unclear. In light of recent evidence suggesting that mouse strain strongly influences PC antimicrobial activity, we sought to characterise PC AMP function in commercially available Nod2−/− mice on a C57BL/6 (B6) background. Specifically, we hypothesised that Nod2−/− B6 mice would display reduced AMP expression and activity.DesignWild-type (WT) and Nod2−/− B6 ileal AMP expression was assessed via real-time PCR, acid urea polyacrylamide gel electrophoresis and mass spectrometry. PCs were enumerated using flow cytometry. Functionally, α-defensin bactericidal activity was evaluated using a gel-overlay antimicrobial assay. Faecal microbial composition was determined using 454-sequencing of the bacterial 16S gene in cohoused WT and Nod2−/− littermates.ResultsWT and Nod2−/− B6 mice displayed similar PC AMP expression patterns, equivalent α-defensin profiles, and identical antimicrobial activity against commensal and pathogenic bacterial strains. Furthermore, minimal differences in gut microbial composition were detected between the two cohoused, littermate mouse groups.ConclusionsOur data reveal that Nod2 does not directly regulate PC antimicrobial activity in B6 mice. Moreover, we demonstrate that previously reported Nod2-dependent influences on gut microbial composition may be overcome by environmental factors, such as cohousing with WT littermates
Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut
Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile
Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition
Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease
Increased colonic expression of ACE2 associates with poor prognosis in Crohn’s disease
The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan–Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10–4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes
- …