32 research outputs found

    The Role of the spv Genes in Salmonella Pathogenesis

    Get PDF
    Salmonella strains cause three main types of diseases in people: gastroenteritis, enteric (typhoid) fever, and non-typhoid extra-intestinal disease with bacteremia. Genetic analysis indicates that each clinical syndrome requires distinct sets of virulence genes, and Salmonella isolates differ in their constellation of virulence traits. The spv locus is strongly associated with strains that cause non-typhoid bacteremia, but are not present in typhoid strains. The spv region contains three genes required for the virulence phenotype in mice: the positive transcriptional regulator spvR and two structural genes spvB and spvC. SpvB and SpvC are translocated into the host cell by the Salmonella pathogenicity island-2 type-three secretion system. SpvB prevents actin polymerization by ADP-ribosylation of actin monomers, while SpvC has phosphothreonine lyase activity and has been shown to inhibit MAP kinase signaling. The exact mechanisms by which SpvB and SpvC act in concert to enhance virulence are still unclear. SpvB exhibits a cytotoxic effect on host cells and is required for delayed cell death by apoptosis following intracellular infection. Strains isolated from systemic infections of immune compromised patients, particularly HIV patients, usually carry the spv locus, strongly suggesting that CD4 T cells are required to control disease due to Salmonella that are spv positive. This association is not seen with typhoid fever, indicating that the pathogenesis and immunology of typhoid have fundamental differences from the syndrome of non-typhoid bacteremia

    Biology and Clinical Significance of Virulence Plasmids in Salmonella Serovars

    Get PDF
    Non-typhoid Salmonella strains containing virulence plasmids are highly associated with bacteremia and disseminated infection in humans. These plasmids are found in Salmonella serovars adapted to domestic animals, such as Salmonella dublin and Salmonella choleraesuis, as well as in the widely distributed pathogens Salmonella typhimurium and Salmonella enteritidis. Although virulence plasmids differ between serovars, all contain a highly conserved 8-kb region containing the spv locus that encodes the spvR regulatory gene and four structural spvABCD genes. Studies in mice suggest that the spv genes enhance the ability of Salmonella strains to grow within cells of the reticuloendothelial system. The spv genes are not expressed during exponential growth in vitro but are rapidly induced following entry of Salmonella strains into mammalian cells, including macrophages. Transcription of the spv genes is controlled by the stationary-phase (T factor RpoS, and mutations in RpoS abolish virulence. These studies suggest that the ability of Salmonella strains to respond to starvation stress in the host tissues is an essential component of virulenc

    Myeloid Differentiation Primary Response Gene 88 Is Required for the Resolution of Otitis Media

    Get PDF
    Signaling defects in the Toll-like receptor (TLR) pathway, such as interleukin-1 receptor–associated kinase 4 deficiency, highlight the prominence of TLR signaling in the defense against bacterial disease. Because myeloid differentiation primary response gene 88 (MyD88) can transduce signals from almost all TLRs, we studied its role in otitis media (OM), the most common upper respiratory tract bacterial infectious disease in young children

    Anthrax Toxins Inhibit Neutrophil Signaling Pathways in Brain Endothelium and Contribute to the Pathogenesis of Meningitis

    Get PDF
    Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies

    A Model of Salmonella Colitis with Features of Diarrhea in SLC11A1 Wild-Type Mice

    Get PDF
    Background: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1 G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1 G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2 Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPHdeficient (gp91 phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91 phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore,

    Helicobacter pylori Preferentially Induces Interleukin 12 (IL-12) Rather than IL-6 or IL-10 in Human Dendritic Cells

    No full text
    Dendritic cells are potent antigen-presenting cells that are present in the gastrointestinal tract and are required for the induction of a Th1 T-cell acquired immune response. Since infection with the gastric pathogen Helicobacter pylori elicits a Th1 cell response, the interaction of these organisms with dendritic cells should reflect the Th1 bias. We incubated H. pylori with cultured human dendritic cells and measured the cytokine induction profile, comparing the response to that induced by Salmonella enterica serovar Typhimurium. We found that H. pylori induced little interleukin 6 (IL-6) and essentially no IL-10 in contrast to S. enterica. However, H. pylori induced levels of IL-12 that were 30% of those induced by S. enterica, indicating a Th1 response. An isogenic cagE mutant of H. pylori lost about 50% of its IL-12-inducing ability, suggesting a role for the cag type IV secretion system in the stimulation of dendritic cells
    corecore