21 research outputs found

    Intégration photonique : développements de coupleurs évanescents à haute performance et technologies associées

    Get PDF
    La photonique sur silicium a le potentiel de rendre des technologies de télécommunication optiques accessibles au grand public. Alors que l’indice de réfraction élevé du silicium permet de fabriquer des circuits photoniques intégrés (CPI) compacts, il rend difficile l’injection de lumière sur les puces de silicium. Pour faciliter le transfert de lumière d’une fibre optique vers un guide d’onde en silicium, une plateforme technologique nommée coupleur évanescent optimisé pour les différences d’indice de réfraction élevées (CEIRE) a été développée à l’Université de Sherbrooke. Afin d’appuyer cette méthode d’injection, des technologies complémentaires ont également été étudiées

    Nouvelles technologies de fabrication associées aux composants photoniques hybrides

    Get PDF
    Afin de rendre les télécommunications optiques disponibles au plus grand nombre, le rapport coût/fonctions entrainé par la production de composants photoniques doit être fortement réduit. Or, un procédé permet de repousser les limites des dispositifs classiques basés sur un seul matériau. Il s'agit de l'intégration hybride. Cette technique fait intervenir deux échantillons ou plus pour optimiser les composants. C'est pourquoi ce projet de maîtrise s'est concentré sur le développement de nouvelles technologies de fabrication pouvant appuyer l'hybridation. En fait, ce document aborde le sujet à partir des trois directions suivantes: Direction 1: Collage moléculaire basse température à base de titane oxydé par plasma. Dans ce premier cas, le but est d'obtenir des collages moléculaires dont la forte adhésion permet de faire de l'intégration hybride en dessous de 300 [degrés Celsius]. Pour y arriver, une couche intermédiaire de titane oxydé par plasma est utilisée. Cela rend possible le collage d'échantillons de petites tailles, de matériaux différents et possédants des microstructures. Direction 2: Intégration de réseaux de Bragg verticaux dans des circuits planaires optiques. Dans ce second cas, le but est d'intégrer des réseaux de Bragg verticaux sur des branches de jonctions"Y" grâce à une lithographie mixte (photolithographie et électrolithographie combinés). Cela rend possible l'étude de dispositifs non disponibles commercialement. Direction 3: Coupleur SU-8/Silicium à faibles pertes. Dans ce dernier cas, le but est de faire le prototypage rapide de coupleurs dont les simulations prédisent une grande efficacité de couplages (>75%). Ces composants tirent profit de la plateforme silicium-sur-isolant (SOI ) et d'une photorésine, la SU-8. Cela rend possible la fabrication et le test de la première génération de ces coupleurs. L'ensemble de ces travaux ouvre la voie à des projets de microfabrication de dispositifs photoniques hybride complets et fonctionnels à l'Université de Sherbrooke

    Nouvelles technologies de fabrication associées aux composants photoniques hybrides

    No full text
    Afin de rendre les télécommunications optiques disponibles au plus grand nombre, le rapport coût/fonctions entrainé par la production de composants photoniques doit être fortement réduit. Or, un procédé permet de repousser les limites des dispositifs classiques basés sur un seul matériau. Il s'agit de l'intégration hybride. Cette technique fait intervenir deux échantillons ou plus pour optimiser les composants. C'est pourquoi ce projet de maîtrise s'est concentré sur le développement de nouvelles technologies de fabrication pouvant appuyer l'hybridation. En fait, ce document aborde le sujet à partir des trois directions suivantes: Direction 1: Collage moléculaire basse température à base de titane oxydé par plasma. Dans ce premier cas, le but est d'obtenir des collages moléculaires dont la forte adhésion permet de faire de l'intégration hybride en dessous de 300 [degrés Celsius]. Pour y arriver, une couche intermédiaire de titane oxydé par plasma est utilisée. Cela rend possible le collage d'échantillons de petites tailles, de matériaux différents et possédants des microstructures. Direction 2: Intégration de réseaux de Bragg verticaux dans des circuits planaires optiques. Dans ce second cas, le but est d'intégrer des réseaux de Bragg verticaux sur des branches de jonctions"Y" grâce à une lithographie mixte (photolithographie et électrolithographie combinés). Cela rend possible l'étude de dispositifs non disponibles commercialement. Direction 3: Coupleur SU-8/Silicium à faibles pertes. Dans ce dernier cas, le but est de faire le prototypage rapide de coupleurs dont les simulations prédisent une grande efficacité de couplages (>75%). Ces composants tirent profit de la plateforme silicium-sur-isolant (SOI ) et d'une photorésine, la SU-8. Cela rend possible la fabrication et le test de la première génération de ces coupleurs. L'ensemble de ces travaux ouvre la voie à des projets de microfabrication de dispositifs photoniques hybride complets et fonctionnels à l'Université de Sherbrooke
    corecore