71 research outputs found

    Effect of various inspired oxygen concentrations on pulmonary and systemic hemodynamics and oxygenation during resuscitation in a transitioning preterm model.

    Get PDF
    BackgroundThe Neonatal Resuscitation Program recommends initial resuscitation of preterm infants with low oxygen (O2) followed by titration to target preductal saturations (SpO2). We studied the effect of resuscitation with titrated O2 on gas exchange, pulmonary, and systemic hemodynamics.MethodologyTwenty-nine preterm lambs (127 d gestation) were randomized to resuscitation with 21% O2 (n = 7), 100% O2 (n = 6), or initiation at 21% and titrated to target SpO2 (n = 16). Seven healthy term control lambs were ventilated with 21% O2.ResultsPreductal SpO2 achieved by titrating O2 was within the desired range similar to term lambs in 21% O2. Resuscitation of preterm lambs with 21% and 100% O2 resulted in SpO2 below and above the target, respectively. Ventilation of preterm lambs with 100% O2 and term lambs with 21% O2 effectively decreased pulmonary vascular resistance (PVR). In contrast, preterm lambs with 21% O2 and titrated O2 demonstrated significantly higher PVR than term lambs on 21% O2.Conclusion(s)Initial resuscitation with 21% O2 followed by titration of O2 led to suboptimal pulmonary vascular transition at birth in preterm lambs. Ventilation with 100% O2 in preterm lambs caused hyperoxia but reduced PVR similar to term lambs on 21% O2. Studies evaluating the initiation of resuscitation at a higher O2 concentration followed by titration based on SpO2 in preterm neonates are needed

    Paneth cell ontogeny in term and preterm ovine models

    Get PDF
    IntroductionPaneth cells are critically important to intestinal health, including protecting intestinal stem cells, shaping the intestinal microbiome, and regulating host immunity. Understanding Paneth cell biology in the immature intestine is often modeled in rodents with little information in larger mammals such as sheep. Previous studies have only established the distribution pattern of Paneth cells in healthy adult sheep. Our study aimed to examine the ontogeny, quantification, and localization of Paneth cells in fetal and newborn lambs at different gestational ages and with perinatal transient asphyxia. We hypothesized that ovine Paneth cell distribution at birth resembles the pattern seen in humans (highest concentrations in the ileum) and that ovine Paneth cell density is gestation-dependent.MethodsIntestinal samples were obtained from 126–127 (preterm, with and without perinatal transient asphyxia) and 140–141 (term) days gestation sheep. Samples were quantified per crypt in at least 100 crypts per animal and confirmed as Paneth cells through in immunohistochemistry.ResultsPaneth cells had significantly higher density in the ileum compared to the jejunum and were absent in the colon.DiscussionExposure to perinatal transient asphyxia acutely decreased Paneth cell numbers. These novel data support the possibility of utilizing ovine models for understanding Paneth cell biology in the fetus and neonate

    In Vitro Consequences of Electronic-Cigarette Flavoring Exposure on the Immature Lung

    No full text
    Background: The developing lung is uniquely susceptible and may be at increased risk of injury with exposure to e-cigarette constituents. We hypothesize that cellular toxicity and airway and vascular responses with exposure to flavored refill solutions may be altered in the immature lung. Methods: Fetal, neonatal, and adult ovine pulmonary artery smooth muscle cells (PASMC) were exposed to popular flavored nicotine-free e-cigarette refill solutions (menthol, strawberry, tobacco, and vanilla) and unflavored solvents: propylene glycol (PG) or vegetable glycerin (VG). Viability was assessed by lactate dehydrogenase assay. Brochodilation and vasoreactivity were determined on isolated ovine bronchial rings (BR) and pulmonary arteries (PA). Results: Neither PG or VG impacted viability of immature or adult cells; however, exposure to menthol and strawberry flavored solutions increased cell death. Neonatal cells were uniquely susceptible to menthol flavoring-induced toxicity, and all four flavorings demonstrated lower lethal doses (LD50) in immature PASMC. Exposure to flavored solutions induced bronchodilation of neonatal BR, while only menthol induced airway relaxation in adults. In contrast, PG/VG and flavored solutions did not impact vasoreactivity with the exception of menthol-induced relaxation of adult PAs. Conclusion: The immature lung is uniquely susceptible to cellular toxicity and altered airway responses with exposure to common flavored e-cigarette solutions
    • …
    corecore