7 research outputs found

    Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich

    No full text
    Pritsch M, Radon K, Bakuli A, et al. Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich. International journal of environmental research and public health. 2021;18(7): 3572.Given the large number of mild or asymptomatic SARS-CoV-2 cases, only population-based studies can provide reliable estimates of the magnitude of the pandemic. We therefore aimed to assess the sero-prevalence of SARS-CoV-2 in the Munich general population after the first wave of the pandemic. For this purpose, we drew a representative sample of 2994 private households and invited household members 14 years and older to complete questionnaires and to provide blood samples. SARS-CoV-2 seropositivity was defined as Roche N pan-Ig ≥ 0.4218. We adjusted the prevalence for the sampling design, sensitivity, and specificity. We investigated risk factors for SARS-CoV-2 seropositivity and geospatial transmission patterns by generalized linear mixed models and permutation tests. Seropositivity for SARS-CoV-2-specific antibodies was 1.82% (95% confidence interval (CI) 1.28-2.37%) as compared to 0.46% PCR-positive cases officially registered in Munich. Loss of the sense of smell or taste was associated with seropositivity (odds ratio (OR) 47.4; 95% CI 7.2-307.0) and infections clustered within households. By this first population-based study on SARS-CoV-2 prevalence in a large German municipality not affected by a superspreading event, we could show that at least one in four cases in private households was reported and known to the health authorities. These results will help authorities to estimate the true burden of disease in the population and to take evidence-based decisions on public health measures

    From first to second wave: Follow-up of the prospective COVID-19 cohort (KoCo19) in Munich (Germany).

    Get PDF
    BACKGROUND: In the 2nd year of the COVID-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021. METHODS: The KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys® Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N = 2768) as well as leisure time activities (N = 1263) were collected in summer 2020. RESULTS: Weighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2020 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences. CONCLUSION: The number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of SARS-CoV-2 sero-positive baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important

    A Serology Strategy for Epidemiological Studies Based on the Comparison of the Performance of Seven Different Test Systems - The Representative COVID-19 Cohort Munich

    No full text
    Olbrich L, Castelletti N, Schälte Y, et al. A Serology Strategy for Epidemiological Studies Based on the Comparison of the Performance of Seven Different Test Systems - The Representative COVID-19 Cohort Munich. bioRxiv. 2021.Background - Serosurveys are essential to understand SARS-CoV-2 exposure and enable population-level surveillance, but currently available tests need further in-depth evaluation. We aimed to identify testing-strategies by comparing seven seroassays in a population-based cohort. Methods - We analysed 6,658 samples consisting of true-positives (n=193), true-negatives (n=1,091), and specimens of unknown status (n=5,374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2; and virus-neutralisation, GeneScript®cPass™, VIRAMED-SARS-CoV-2-ViraChip®, and Mikrogen- recom Line-SARS-CoV-2-IgG, including common-cold CoVs, for confirmatory testing. Statistical modelling generated optimised assay cut-off-thresholds. Findings - Sensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3%; for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturer’s/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median titres remained stable for at least 90-120 days after RT-PCR-positivity. Of true-positives with positive RT-PCR (<30 days), 6.7% did not mount detectable seroresponses. Virus-neutralisation was 73.8% sensitive, 100.0% specific (1:10 dilution). Neutralisation surrogate tests (GeneScript®cPass™, Mikrogen- recom Line-RBD) were >94.9% sensitive, >98.1% specific. Seasonality had limited effects; cross-reactivity with common-cold CoVs 229E and NL63 in SARS-CoV-2 true-positives was significant. Conclusion - Optimised cut-offs improved test performances of several tests. Non-reactive serology in true-positives was uncommon. For epidemiological purposes, confirmatory testing with virus-neutralisation may be replaced with GeneScript®cPass™ or recom Line-RBD. Head-to-head comparisons given here aim to contribute to the refinement of testing-strategies for individual and public health use

    The interplay of viral loads, clinical presentation, and serological responses in SARS-CoV-2 – Results from a prospective cohort of outpatient COVID-19 cases

    No full text
    Puchinger K, Castelletti N, Rubio-Acero R, et al. The interplay of viral loads, clinical presentation, and serological responses in SARS-CoV-2 – Results from a prospective cohort of outpatient COVID-19 cases. Virology. 2022;569:37-43

    Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience

    No full text
    Rubio-Acero R, Beyerl J, Muenchhoff M, et al. Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience. Science of The Total Environment. 2021;797: 149031

    The representative COVID-19 cohort Munich (KoCo19): from the beginning of the pandemic to the Delta virus variant

    No full text
    Le Gleut R, Plank M, Pütz P, et al. The representative COVID-19 cohort Munich (KoCo19): from the beginning of the pandemic to the Delta virus variant. BMC Infectious Diseases. 2023;23(1): 466.**Background** Population-based serological studies allow to estimate prevalence of SARS-CoV-2 infections despite a substantial number of mild or asymptomatic disease courses. This became even more relevant for decision making after vaccination started. The KoCo19 cohort tracks the pandemic progress in the Munich general population for over two years, setting it apart in Europe. **Methods** Recruitment occurred during the initial pandemic wave, including 5313 participants above 13 years from private households in Munich. Four follow-ups were held at crucial times of the pandemic, with response rates of at least 70%. Participants filled questionnaires on socio-demographics and potential risk factors of infection. From Follow-up 2, information on SARS-CoV-2 vaccination was added. SARS-CoV-2 antibody status was measured using the Roche Elecsys® Anti-SARS-CoV-2 anti-N assay (indicating previous infection) and the Roche Elecsys® Anti-SARS-CoV-2 anti-S assay (indicating previous infection and/or vaccination). This allowed us to distinguish between sources of acquired antibodies. **Results** The SARS-CoV-2 estimated cumulative sero-prevalence increased from 1.6% (1.1-2.1%) in May 2020 to 14.5% (12.7-16.2%) in November 2021. Underreporting with respect to official numbers fluctuated with testing policies and capacities, becoming a factor of more than two during the second half of 2021. Simultaneously, the vaccination campaign against the SARS-CoV-2 virus increased the percentage of the Munich population having antibodies, with 86.8% (85.5-87.9%) having developed anti-S and/or anti-N in November 2021. Incidence rates for infections after (BTI) and without previous vaccination (INS) differed (ratio INS/BTI of 2.1, 0.7-3.6). However, the prevalence of infections was higher in the non-vaccinated population than in the vaccinated one. Considering the whole follow-up time, being born outside Germany, working in a high-risk job and living area per inhabitant were identified as risk factors for infection, while other socio-demographic and health-related variables were not. Although we obtained significant within-household clustering of SARS-CoV-2 cases, no further geospatial clustering was found. **Conclusions** Vaccination increased the coverage of the Munich population presenting SARS-CoV-2 antibodies, but breakthrough infections contribute to community spread. As underreporting stays relevant over time, infections can go undetected, so non-pharmaceutical measures are crucial, particularly for highly contagious strains like Omicron
    corecore