7 research outputs found

    Energy exchanges between atoms with a quartz crystal μ\mu-balance

    Full text link
    We propose an experimental method to fully characterize the energy exchange of particles during the physical vapor deposition process of thin surface layers. Our approach is based on the careful observation of perturbations of the oscillation frequency of a Quartz Crystal μ\mu-balance induced by the particles interaction. With this technique, it is possible to measure the momentum exchange of the atoms during the evaporation process and determine the ideal evaporation rate for an uniform energy distribution. We are able to follow the desorption dynamics of particles immediately after the first layers have been formed. These results are in close relation to the surface binding energy of the evaporated material, they offer a better control to obtain the desired properties of the thin surface layer. We applied our technique to investigate the physical vapor evaporation process for diverse elements, usually implemented in the development of film surface layers, such as Cu, W, Au, Gd and In, and confirm that our results are in agreement with measurements done previously with other techniques such as low-temperature photoluminescence

    Motional state analysis of a trapped ion by ultra-narrowband composite pulses

    Full text link
    In this work, we present a method for measuring the motional state of a two-level system coupled to a harmonic oscillator. Our technique uses ultra-narrowband composite pulses on the blue sideband transition to scan through the populations of the different motional states. Our approach does not assume any previous knowledge of the motional state distribution and is easily implemented. It is applicable both inside and outside of the Lamb-Dicke regime. For higher phonon numbers especially, the composite pulse sequence can be used as a filter for measuring phonon number ranges. We demonstrate this measurement technique using a single trapped ion and show good detection results with the numerically evaluated pulse sequence.Comment: 8 pages, 7 figure

    Diseño y caracterización de un enfriador de átomos de tipo “desacelerador Zeeman”

    No full text
    Nosotros presentamos un método que utiliza simultáneamente dos modelos matemáticos, con el objetivo de optimizar el diseño de un desacelerador Zeeman, con miras a la implementación de átomos ultrafríos a la física del estado solido. Proponemos la implementación novedosa de una simulación por medio de elementos finitos con la cual es posible predecir con mucha precisión el perfil de intensidad del campo magnético generado por el diseño realizado. Al poder predecir el comportamiento del desacelerador Zeeman se adquiere un mayor control, a partir del cual es posible optimizar las diferentes variables experimentales. El método propuesto es aplicado para el diseño y construcción de un desacelerador Zeeman solenoidal de tipo “Spin Flip” para átomos de estroncio. El perfil de intensidades de campo magnético generado por el desacelerador Zeeman construido concuerda con el perfil de intensidades de campo magnético necesario para el enfriamiento de átomos de estroncio y tiene además la ventaja que la intensidad de campo magnético tiende a cero en los extremos. Ambas condiciones permiten incrementar la cantidad de átomos enfriados y atrapados.We report on an investigation of a method that applies simultaneously two different mathematical models in order to optimize the design of a Zeeman Slower towards the implementation of ultra cold atoms in solid state physics. We introduce the implementation of a finite element simulation that allows us to predict with great accuracy the magnetic field intensity profile generated by the proposed design. Through the prediction of the behavior of the Zeeman Slower a greater control is acquired, which allows the optimization of the different experimental variables. We applied the method in the design of a multilayer solenoidal “Spin-Flip” Zeeman Slower for strontium atoms. The magnetic intensity profile generated by the Zeeman Slower is in agreement with the magnetic field strength profile necessary for the atom cooling and tends to zero in both end sides. The latter terms are essential in order to optimize the amount of trapped and cooled atoms.Universidad de Costa Rica//UCR/Costa RicaDeutscher Akademischer Austauschdienst/[Programa Research Internship in Science and Engineering RISE]/DAAD/AlemaniaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Get PDF
    We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.Universidad de Costa Rica//UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA
    corecore