7 research outputs found
The Partial L-Moment of the Four Kappa Distribution
Statistical analysis of extreme events such as flood events is often carried out to predict large return period events. The behaviour of extreme events not only involves heavy-tailed distributions but also skewed distributions, similar to the four-parameter Kappa distribution (K4D). In general, this covers many extreme distributions such as the generalized logistic distribution (GLD), the generalized extreme value distribution (GEV), the generalized Pareto distribution (GPD), and so on. To utilize these distributions, we have to estimate parameters accurately. There are many parameter estimation methods, for example, Method of Moments, Maximum Likelihood Estimator, L-Moments, or partial L-Moments. Nowadays, no researchers have applied the partial L-Moments method to estimate the parameters of K4D. Therefore, the objective of this paper is to derive the partial L-Moments (PL-Moments) for K4D, namely the PL-Moments of the K4D in order to estimate hydrological extremes from censored data. The findings of this paper are formulas of parameter estimation for K4D based on the PL-Moments approach. We have derived the Partial Probability-Weighted Moments (PPWMs) of the K4D (Îē'r) and derive the estimation of parameters when separated by shape parameters (k,h) conditions i.e., case k>-1 and h>0, case k>-1 and h=0 and case -1<k<-1/h and h<0. Finally, we expect that the parameter estimate for K4D from this formula will help to make accurate forecasts. Doi: 10.28991/ESJ-2023-07-04-06 Full Text: PD
Climate Forecasting Models for Precise Management Using Extreme Value Theory
The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1â2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention. Doi: 10.28991/CEJ-2023-09-07-014 Full Text: PD
Daily Maximum Rainfall Forecast Affected by Tropical Cyclones using Grey Theory
This research aims to develop a model for forecasting daily maximum rainfall caused by tropical cyclones over Northeastern Thailand during August and September 2022 and 2023. In the past, the ARIMA or ARIMAX method to forecast rainfall was used in research. It is a short-term rainfall prediction. In this research, the Grey Theory was applied as it is an approach that manages limited and discrete data for long-term forecasting. The Grey Theory has never been used to forecast rainfall that is affected by tropical cyclones in Northeastern Thailand. The Grey model GM(1,1) was analyzed with the highest daily cumulative rainfall data during the August and September tropical cyclones of the years 2018â2021, from the weather stations in Northeastern Thailand in 17 provinces. The results showed that in August 2022 and 2023, only Nong Bua Lamphu province had a highest daily rainfall forecast of over 100 mm, while the other provinces had values of less than 70 mm. For September 2022 and 2023, there were five provinces with the highest daily rainfall forecast of over 100 mm. The average of mean absolute percentage error (MAPE) of the maximum rainfall forecast model in August and September is approximately 20 percent; therefore, the model can be applied in real scenarios. Doi: 10.28991/CEJ-2022-08-08-02 Full Text: PD
āđāļāļāļāļģāļĨāļāļāļŠāļģāļŦāļĢāļąāļāļāđāļēāļŠāļļāļāļāļĩāļ: āđāļāļāļāļģāļĨāļāļāļŠāļāļīāļāļīāļāļąāļāļāļąāļ r āļāļąāļāļāļąāļāļāļĩāđāđāļŦāļāđāļāļĩāđāļŠāļļāļExtreme Value Model: The r Largest Order Statistic Model
āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļēāļŠāļļāļāļāļĩāļ (Extreme Value Analysis) āđāļāđāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāļāļĩāđāļĄāļĩāļāđāļēāļŠāļđāļāļŠāļļāļāļŦāļĢāļ·āļāļāđāļģāļŠāļļāļ āđāļāļĒāđāļāđāļāļāđāļāļĄāļđāļĨāļāļĩāđāļāļĒāļđāđāđāļāļŠāđāļ§āļāļāļĨāļēāļĒāļŦāļēāļāļāļāļāļāđāļāļĄāļđāļĨāļāļķāđāļāļĄāļĩāļāļģāļāļ§āļāļāđāļāļĄāļđāļĨāļāđāļāļĒāļĄāļēāļ āļāļģāđāļŦāđāļāļĨāļāļāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļĄāļĩāļāļ§āļēāļĄāļāļĨāļēāļāđāļāļĨāļ·āđāļāļāļŠāđāļāļāļĨāļāđāļāļāļēāļĢāļāļĢāļ°āļĄāļēāļāļāđāļēāļāļēāļĢāļēāļĄāļīāđāļāļāļĢāđāļāļāļāđāļāļāļāļģāļĨāļāļāļāļĩāđāļāļīāļāļāļĨāļēāļāđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļĄāļēāļāļĢāļ°āļāļąāļāļāļēāļĢāđāļāļīāļāļāđāļģāđāļĄāđāđāļĄāđāļāļĒāļģāđāļāđāļēāļāļĩāđāļāļ§āļĢ āļāļąāļāļāļąāđāļāļāļēāļĢāļĨāļāļāļ§āļēāļĄāļāļĨāļēāļāđāļāļĨāļ·āđāļāļāļāļĩāđāđāļāļīāļāļāļēāļāļāļēāļĢāļĄāļĩāļāļģāļāļ§āļāļāđāļāļĄāļđāļĨāļāđāļāļĒāļāļķāļāļĄāļĩāļāļ§āļēāļĄāļāļģāđāļāđāļāļāļĒāđāļēāļāļĒāļīāđāļ āļāļķāđāļāļ§āļīāļāļĩāļāļēāļĢāļāļĩāđāđāļāđāļāļąāļāļāļĒāđāļēāļāđāļāļĢāđāļŦāļĨāļēāļĒ āļāļ·āļ āļāļēāļĢāđāļāļīāđāļĄāļāļāļēāļāļŦāļĢāļ·āļāđāļāļīāđāļĄāļāļģāļāļ§āļāļāđāļāļĄāļđāļĨ āđāļāđāļāļāļēāļĢāđāļāļīāđāļĄāļāđāļāļĄāļđāļĨāđāļāđāļēāđāļāđāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļēāļŠāļļāļāļāļĩāļ āļāļķāđāļāļāļ°āļŠāļēāļĄāļēāļĢāļāđāļāļīāđāļĄāđāļāđāđāļāļāļēāļ°āļāļĢāļāļĩāļāļĩāđāļāļđāđāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ·āļāļāđāļāđāļ§āļīāļāļĩāļāļĨāđāļāļāđāļ§āļĨāļē (Block Time Method) āđāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļāđāļēāļāļąāđāļ āđāļāļĒāļāļēāļĢāđāļāļāđāļāļāļāļĩāđāđāļāđāđāļāļāļĢāļāļĩāļāļĩāđāđāļĢāļĩāļĒāļāļ§āđāļē āļāļēāļĢāđāļāļāđāļāļāļāđāļēāļŠāļļāļāļāļĩāļāļāļąāļĒāļāļąāđāļ§āđāļāļŠāļģāļŦāļĢāļąāļāļŠāļāļīāļāļīāļāļąāļāļāļąāļ r āļāļąāļāļāļąāļāļāļĩāđāđāļŦāļāđāļāļĩāđāļŠāļļāļ (Generalized Extreme Value Distribution for the r Largest Order Statistics; GEVr) āļāļ·āļāļ§āđāļēāđāļāđāļāļ§āļīāļāļĩāļāļēāļĢāļāļĩāđāļāļ°āļāļģāđāļŦāđāđāļāļāļāļģāļĨāļāļāļāļĩāđāđāļāđāļāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāđāļāļĄāļđāļĨāļĄāļēāļāļāļķāđāļ āđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļĄāļēāļāļāđāļēāļāļēāļĢāļēāļĄāļīāđāļāļāļĢāđāđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļĄāļēāļāļĢāļ°āļāļąāļāļāļēāļĢāđāļāļīāļāļāđāļģāđāļĄāđāļāļĒāļģāļĄāļēāļāļĒāļīāđāļāļāļķāđāļExtreme Value Analysis is the analysis of data with the largest and smallest values in the data set. They are at the tail end of the data distribution. Only a small fraction available can give results that are very misleading, resulting in inaccuracy in parameter estimation of the model as well as inaccurate return level estimates. Reduction of the aberration due to such a small amount of data is essential. A widely used method of reducing the error is to increase the sample size or increase the amount of data into extreme value analysis. Data can only be added if the block time method is used in the analysis. The distribution in this case is called the Generalized Extreme Value Distribution for the r largest order statistics (GEVr). The model derived from the analysis appears to be more suitable for the data. Moreover, parameter estimation and return level estimation would yield more reliable results
āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļēāļŠāļļāļāļāļĩāļ: āļ āļēāļĒāđāļāđāļāļĢāļ°āļāļ§āļāļāļēāļĢāđāļĄāđāļāļāļāļĩāđExtreme Value Analysis: Nonâstationary Process
āļāđāļēāļŠāļļāļāļāļĩāļ (Extreme value) āļŦāļĄāļēāļĒāļāļķāļ āđāļāļāļāļāļāļāđāļāļĄāļđāļĨāļāļĩāđāđāļāđāļāļāđāļēāļŠāļđāļāļŠāļļāļ āļŦāļĢāļ·āļ āļāđāļēāļāđāļģāļŠāļļāļ āļāļĩāđāļāļĒāļđāđāđāļāđāļŦāļāļļāļāļēāļĢāļāđāļŠāļļāļāļāļĩāļ (Extreme event) āļāļĩāđāđāļāļīāļāļāļķāđāļāđāļāļāļĢāļĢāļĄāļāļēāļāļī āļāļąāļāļāļąāđāļāļāļēāļĢāļŦāļēāđāļāļāļēāļŠāļāļĩāđāļāļ°āđāļāļīāļāđāļŦāļāļļāļāļēāļĢāļāđāļŠāļļāļāļāļĩāļāđāļāļāļāļĩāļāļ§āđāļēāļāļ°āđāļāļīāļāļāļķāđāļāđāļāđāļāļĩāļāđāļāļāļāļēāļāļāļŦāļĢāļ·āļāđāļĄāđāļāļąāđāļ āļāļ·āļāļāļēāļĢāļāļĩāđāļāļąāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĒāļēāļĒāļēāļĄāļŠāļĢāđāļēāļāđāļāļāļāļģāļĨāļāļāļāļĩāđāļāļĩāļāļĩāđāļŠāļļāļāļŠāļģāļŦāļĢāļąāļāļāđāļēāļŠāļļāļāļāļĩāļāļāļĩāđāļĻāļķāļāļĐāļē āļāļķāđāļāļāļąāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļŠāđāļ§āļāđāļŦāļāđāļĄāļąāļāļāļ°āļāļąāļāļāđāļāļĄāļđāļĨāļāļąāļāļāļĨāđāļēāļ§āļāļīāđāļāđāļāđāļĄāđāļāļģāļĄāļēāļāļīāļāļēāļĢāļāļēāđāļāļāļēāļĢāļŠāļĢāđāļēāļāđāļāļāļāļģāļĨāļāļāđāļāļ·āđāļāļāļāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļŦāļĨāđāļēāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļāļąāļāļāđāļāļāđāļĨāļ°āļĒāļļāđāļāļĒāļēāļ āđāļāđāđāļāļāļ§āļēāļĄāđāļāđāļāļāļĢāļīāļāļāđāļēāļāļąāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļāļāļēāļĢāļāļĢāļēāļāļāļ§āļēāļĄāļāđāļēāļāļ°āđāļāđāļāļŦāļĢāļ·āļāđāļāļāļēāļŠāļāļāļāđāļŦāļāļļāļāļēāļĢāļāđāļāļĩāđāļĄāļĩāļāđāļēāļŠāļđāļāļŠāļļāļāļŦāļĢāļ·āļāļāđāļģāļŠāļļāļāļāļķāđāļāļāļĒāļđāđāđāļāļŠāđāļ§āļāļāļĨāļēāļĒāļŦāļēāļāļāļĩāđāļĄāļĩāļāļģāļāļ§āļāļāđāļāļĄāļđāļĨāļāđāļāļĒāļĄāļēāļ āļāļķāđāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāļāļĩāđāļĄāļĩāļāļļāļāļŠāļĄāļāļąāļāļīāđāļāđāļāļāđāļēāļŠāļļāļāļāļĩāļ āđāļāļ·āđāļāļāđāļāļŦāļāļķāđāļāļāļĩāđāļāļģāđāļāđāļāļāđāļāļāļāļĢāļ§āļāļŠāļāļāļāđāļāļāļāļ°āļāļģāļāđāļāļĄāļđāļĨāđāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāđāļāļ·āđāļāļŦāļēāļāđāļēāļāļēāļĢāļēāļĄāļīāđāļāļāļĢāđāļāļāļāđāļāļāļāļģāļĨāļāļāļāļ·āļ āļāđāļāļĄāļđāļĨāļāļĩāđāļāļģāļĄāļēāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĒāļđāđāļ āļēāļĒāđāļāđāļāļĢāļ°āļāļ§āļāļāļēāļĢāđāļāļāđāļ āļĢāļ°āļŦāļ§āđāļēāļāļāļĢāļ°āļāļ§āļāļāļēāļĢāļāļāļāļĩāđ (Stationary Process) āļŦāļĢāļ·āļāļāļĢāļ°āļāļ§āļāļāļēāļĢāđāļĄāđāļāļāļāļĩāđ (Non-stationary Process) āđāļāļ·āđāļāļāļāļēāļāļāļĢāļ°āļāļ§āļāļāļēāļĢāļāļąāđāļāļŠāļāļāļĄāļĩāļāļąāđāļāļāļāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļ§āļīāļāļĩāļāļēāļĢāđāļĨāļ·āļāļāļāļąāļ§āđāļāļāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļĩāđāđāļāļāļāđāļēāļāļāļąāļ āļāļąāļāļāļąāđāļāļāđāļēāļŦāļēāļāđāļĄāđāļĄāļĩāļāļąāđāļāļāļāļāļāļēāļĢāļāļīāļāļēāļĢāļāļēāļĨāļąāļāļĐāļāļ°āļāļāļāļāđāļāļĄāļđāļĨ āļāļēāļāļāļ°āļāļģāđāļŦāđāļāļĨāļāļĢāļ°āļĄāļēāļāļāđāļēāļāļēāļĢāļēāļĄāļīāđāļāļāļĢāđāļāļāļāđāļāļāļāļģāļĨāļāļāļāļīāļāļāļĨāļēāļ āđāļĨāļ°āļŠāđāļāļāļĨāļāļķāļāļāļēāļĢāļāļģāđāļāđāļāđāļāđāļāļāļĩāđāđāļĄāđāđāļāļīāļāļāļĢāļ°āđāļĒāļāļāđāđāļĨāļ°āļāļēāļāļāļ°āļŠāđāļāļāļĨāļĢāđāļēāļĒāđāļĢāļ āđāļāļĒāđāļāļāļēāļ°āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļāļāđāļēāļāļāļĩāđāļāđāļāļāđāļāđāļāļ§āļēāļĄāđāļĄāđāļāļĒāļģāļāļāļāđāļāļāļāļģāļĨāļāļāđāļāđāļāļāļĒāđāļēāļāļĒāļīāđāļExtreme value means a set of data that is the highest or lowest value in an extreme event that naturally occurs. Therefore, it is intended to find the opportunity to experience the extreme events in the past that will happen in the future. This includes the analysts to create the best model for the extreme values study. Most analysts tend to exclude the data and do not consider it in creating the model because the data is complicated and complex. However, in reality, they want to know the probability or opportunity of the event with the highest or lowest value, which is at the tail end with very little amount of data. In data analysis of the extreme features, it is necessary to check for the model parameters and consider the type of data to be analyzed whether the process is stationary or unstable process (non-stationary process). Since both processes have different analysis procedures and methods for selecting the suitable model, then, if there is no data considering process, the results might be incorrect causing an error in estimated parameter values of the model. Consequently, this might lead to useless utilization and serious outcomes particularly the data analysis process that requires high precision of the model
Spatial Modeling of Extreme Temperature in Northeast Thailand
The objective of the present study was to examine and predict the annual maximum temperature in the northeast of Thailand by using data from 25 stations and employing spatial extreme modeling which is based on max-stable process (MSP) using schlatter’s method. We analyzed extreme temperature data using the MSP using latitude, longitude, and altitude variables. Our result showed that the maximum temperature has an increasing trend. The return level estimates of the study areas from both the local generalized extreme value (GEV) model and MSP models show that the Nong Khai, Maha Sarakham, and Khon Kaen stations had higher return levels than the other stations for every return period, whereas Pak Chong Agromet had the lowest return levels. Furthermore, the results showed that MSP modeling is more suitable than point-wise GEV distribution. We realize that the spatial extreme modeling based on MSP provides more precise and robust return levels as well as some indices of the maximum temperatures for both the observation stations and the locations with no observed data. The results of this study are consistent with those of some previous studies. The increasing trend in return levels could affect agriculture and the surrounding environment in northeast Thailand. Spatial extreme modeling can be beneficial in the impact management and vulnerability assessment under extreme event scenarios caused by climate change