636 research outputs found

    Exact solutions to non-classical steady nozzle flows of Bethe-Zel'dovich-Thompson fluids

    Get PDF
    Steady nozzle flows of Bethe-Zel'dovich-Thompson fluids - substances exhibiting non-classical gasdynamic behaviour in a finite vapour-phase thermodynamic region in close proximity to the liquid-vapour saturation curve - are examined. Non-classical flow features include rarefaction shock waves, shock waves with either upstream or downstream sonic states and split shocks. Exact solutions for a mono-component single-phase fluid expanding from a reservoir into a stationary atmosphere through a conventional converging-diverging nozzle are determined within the quasi-one-dimensional inviscid flow approximation. The novel analytical approach makes it possible to elucidate the connection between the adiabatic, possibly non-isentropic flow field and the underlying local isentropic-flow features, including the possible qualitative alterations in passing through shock waves. Contrary to previous predictions based on isentropic-flow inspection, shock disintegration is found to occur also from reservoir states corresponding to a single sonic point. The global layout of the flow configurations produced by a monotonic decrease in the ambient pressure, namely the functioning regime, is examined for reservoir conditions resulting in single-phase flows. Accordingly, a classification of steady nozzle flows into 10 different functioning regimes is proposed. Flow conditions determining the transition between the different classes of flow are investigated and each functioning regime is associated with the corresponding thermodynamic region of reservoir states

    Effects of Molecular Complexity and Reservoir Conditions on the Discharge Coefficient of Adapted Planar Nozzles

    Get PDF
    The transonic flow at throat section of a convergent-divergent nozzle is studied in adapted conditions to assess the influence of the fluid molecular complexity and total thermodynamic state on the discharge coefficient. The standard Sauer method is applied to solve the transonic perturbation potential equation in the vicinity of the nozzle throat. An analytic expression is derived that allows one to compute the discharge coefficient in terms of the nozzle curvature at the throat section and of the value of the fundamental derivative of gasdynamics at sonic conditions, which depends on the fluid molecular complexity and on the thermodynamic state in the reservoir. A linear dependence of the discharge coefficient on the sonic value of the fundamental derivative of gasdynamics is exposed

    Numerical simulations of ice accretion on wind turbine blades: are performance losses due to ice shape or surface roughness?

    Get PDF
    Ice accretion on wind turbine blades causes both a change in the shape of its sections and an increase in surface roughness. These lead to degraded aerodynamic performances and lower power output. Here, a high-fidelity multi-step method is presented and applied to simulate a 3 h rime icing event on the National Renewable Energy Laboratory 5 MW wind turbine blade. Five sections belonging to the outer half of the blade were considered. Independent time steps were applied to each blade section to obtain detailed ice shapes. The roughness effect on airfoil performance was included in computational fluid dynamics simulations using an equivalent sand-grain approach. The aerodynamic coefficients of the iced sections were computed considering two different roughness heights and extensions along the blade surface. The power curve before and after the icing event was computed according to the Design Load Case 1.1 of the International Electrotechnical Commission. In the icing event under analysis, the decrease in power output strongly depended on wind speed and, in fact, tip speed ratio. Regarding the different roughness heights and extensions along the blade, power losses were qualitatively similar but significantly different in magnitude despite the well-developed ice shapes. It was found that extended roughness regions in the chordwise direction of the blade can become as detrimental as the ice shape itself

    Shock Tube Flows Past Partially Opened Diaphragms

    Get PDF
    Unsteady compressible flows resulting from the incomplete burst of the shock tube diaphragm are investigated both experimentally and numerically for different initial pressure ratios and opening diameters. The intensity of the shock wave is found to be lower than that corresponding to a complete opening. A heuristic relation is proposed to compute the shock strength as a function of the relative area of the open portion of the diaphragm. Strong pressure oscillations past the shock front are also observed. These multi-dimensional disturbances are generated when the initially normal shock wave diffracts from the diaphragm edges and reflects on the shock tube walls, resulting in a complex unsteady flow field behind the leading shock wave. The limiting local frequency of the pressure oscillations is found to be very close to the ratio of acoustic wave speed in the perturbed region to the shock tube diameter. The power associated with these pressure oscillations decreases with increasing distance from the diaphragm since the diffracted and reflected shocks partially coalesce into a single normal shock front. A simple analytical model is devised to explain the reduction of the local frequency of the disturbances as the distance from the leading shock increases

    Efficient Lagrangian particle tracking algorithms for distributed-memory architectures

    Get PDF
    This paper focuses on the solution of the dispersed phase of Eulerian–Lagrangian one-way coupled particle laden flows. An efficient two-constraint domain partitioning for 2D and 3D unstructured hybrid meshes is proposed and implemented in distributed memory architectures. A preliminary simulation, using a set of representative particles, is performed first to suitably tag the cells with a weight proportional to the probability of being crossed by a particle. In addition, an innovative parallel ray-tracing location algorithm is presented. A global identifier is assigned to each particle resulting in a significant reduction of the overall communication among processes. The proposed approaches are verified against two steady reference cases for ice accretion simulation: a NACA 0012 profile and a NACA 64A008 swept horizontal tail. Furthermore, a cloud droplet impact test case starting from an unsteady flow around a 3D cylinder is performed to evaluate the code performances on unsteady problems

    Admissibility Region for Rarefaction Shock Waves in Dense Gases

    Get PDF
    In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic G is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are physically admissible, namely they obey the second law of thermodynamics and fulfil the speed-orienting condition for mechanical stability. Previous studies have demonstrated that the thermodynamic states for which rarefaction shock waves are admissible are however not limited to the G <0 region. In this paper, the conditions for admissibility of rarefaction shocks are investigated. This results in the definition of a new thermodynamic region – the rarefaction shocks region – which embeds the G <0 region. The rarefaction shocks region is bounded by the saturation curve and by the locus of the states connecting double-sonic rarefaction shocks, i.e. shock waves in which both the pre-shock and post-shock states are sonic. Only one double-sonic shock is shown to be admissible along a given isentrope, therefore the double-sonic states can be connected by a single curve in the volume–pressure plane. This curve is named the double sonic locus. The influence of molecular complexity on the shape and size of the rarefaction shocks region is also illustrated by using the van der Waals model; these results are confirmed by very accurate multi-parameter thermodynamic models applied to siloxane fluids and are therefore of practical importance in experiments aimed at proving the existence of rarefaction shock waves in the single-phase vapour region as well as in future industrial applications operating in the non-classical regime
    • …
    corecore