67 research outputs found

    A multi-task learning CNN for image steganalysis

    Get PDF
    Convolutional neural network (CNN) based image steganalysis are increasingly popular because of their superiority in accuracy. The most straightforward way to employ CNN for image steganalysis is to learn a CNN-based classifier to distinguish whether secret messages have been embedded into an image. However, it is difficult to learn such a classifier because of the weak stego signals and the limited useful information. To address this issue, in this paper, a multi-task learning CNN is proposed. In addition to the typical use of CNN, learning a CNN-based classifier for the whole image, our multi-task CNN is learned with an auxiliary task of the pixel binary classification, estimating whether each pixel in an image has been modified due to steganography. To the best of our knowledge, we are the first to employ CNN to perform the pixel-level classification of such type. Experimental results have justified the effectiveness and efficiency of the proposed multi-task learning CNN

    Rethinking Scale Imbalance in Semi-supervised Object Detection for Aerial Images

    Full text link
    This paper focuses on the scale imbalance problem of semi-supervised object detection(SSOD) in aerial images. Compared to natural images, objects in aerial images show smaller sizes and larger quantities per image, increasing the difficulty of manual annotation. Meanwhile, the advanced SSOD technique can train superior detectors by leveraging limited labeled data and massive unlabeled data, saving annotation costs. However, as an understudied task in aerial images, SSOD suffers from a drastic performance drop when facing a large proportion of small objects. By analyzing the predictions between small and large objects, we identify three imbalance issues caused by the scale bias, i.e., pseudo-label imbalance, label assignment imbalance, and negative learning imbalance. To tackle these issues, we propose a novel Scale-discriminative Semi-Supervised Object Detection (S^3OD) learning pipeline for aerial images. In our S^3OD, three key components, Size-aware Adaptive Thresholding (SAT), Size-rebalanced Label Assignment (SLA), and Teacher-guided Negative Learning (TNL), are proposed to warrant scale unbiased learning. Specifically, SAT adaptively selects appropriate thresholds to filter pseudo-labels for objects at different scales. SLA balances positive samples of objects at different scales through resampling and reweighting. TNL alleviates the imbalance in negative samples by leveraging information generated by a teacher model. Extensive experiments conducted on the DOTA-v1.5 benchmark demonstrate the superiority of our proposed methods over state-of-the-art competitors. Codes will be released soon

    Activation of AMPK sensitizes medulloblastoma to Vismodegib and overcomes Vismodegib‐resistance

    Get PDF
    Vismodegib, a Smoothened antagonist, is clinically approved for treatment of human basal cell carcinoma (BCC), in the clinical trials of medulloblastoma (MB) and other cancers. However, a significant proportion of these tumors fail to respond to Vismodegib after a period of treatment. Here, we find that AMPK agonists, A769662, and Metformin, can inhibit GLI1 activity and synergize with Vismodegib to suppress MB cell growth in vitro and in vivo. Furthermore, combination of AMPK agonists with Vismodegib is effective in overcoming Vismodegib‐resistant MB. This is the first report demonstrating that combining AMPK agonist (Metformin) and SHH pathway inhibitor (Vismodegib) confers synergy for MB treatment and provides an effective chemotherapeutic regimen that can be used to overcome resistance to Vismodegib in SHH‐driven cancers

    AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    Get PDF
    The Hedgehog (Hh) pathway regulates cell differen- tiation and proliferation during development by controlling the Gli transcription factors. Cell fate de- cisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP- activated protein kinase (AMPK) is an important sensor of energy stores and controls protein synthe- sis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhib- iting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcrip- tional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency

    The Critical Indicator of Red-Bed Soft Rocks in Deterioration Process Induced by Water Basing on Renormalization Group Theory

    No full text
    The internal damage of red-bed soft rock induced by water is pervasive. The accumulation, growth, and localization of damage is a multi-scale process that can lead to significant strength loss in red-bed soft rock. Yet, research on the critical state of deterioration process considering multi-scale failure is limited due to high degree of system freedom. Renormalization group theory is an effective approach to find critical point of phase transition in a disordered system. To apply renormalization group theory in red-bed soft rocks, this article firstly analyzed their microstructures. Then, the granular unit model and stripy unit model are proposed to describe the self-similar characteristics of red-bed soft rocks. The calculation results based on renormalization group theory are consistent with the experimental results. The critical reductions of strength induced by water are 60% in light-yellow silty mudstone and 80% in grey silty mudstone. In addition, the critical state of damage propagation caused by stress is also studied and the analytical solution is derived. Results show that the renormalization group theory can effectively couple the micro damage and strength deterioration which provides guidance to the engineering

    Disodium Fumarate Alleviates Endoplasmic Reticulum Stress, Mitochondrial Damage, and Oxidative Stress Induced by the High-Concentrate Diet in the Mammary Gland Tissue of Hu Sheep

    No full text
    The long-term feeding of the high-concentrate diet (HC) reduced rumen pH and induced subacute rumen acidosis (SARA), leading to mammary gland tissue damage among ruminants. Disodium fumarate enhanced rumen bufferation and alleviated a decrease in rumen pH induced by the HC diet. Therefore, the purpose of this study was to investigate whether disodium fumarate could alleviate endoplasmic reticulum (ER) stress, mitochondrial damage, and oxidative stress induced by the high-concentrate diet in the mammary gland tissue of Hu sheep. In this study, 18 Hu sheep in mid-lactation were randomly divided into three groups: one fed with a low-concentrate diet (LC) diet, one fed with a HC diet, and one fed with a HC diet with disodium fumarate (AHC). Each sheep was given an additional 10 g of disodium fumarate/day. The experiment lasted for eight weeks. After the experiment, rumen fluid, blood, and mammary gland tissue were collected. The results show that, compared with the LC diet, the HC diet could reduce rumen pH, and the pH below 5.6 was more than 3 h, and the LPS content of blood and rumen fluid in HC the diet was significantly higher than in the LC diet. This indicates that the HC diet induced SARA in Hu sheep. However, the supplementation of disodium fumarate in the HC diet increased the rumen pH and decreased the content of LPS in blood and rumen fluid. Compared with the LC diet, the HC diet increased Ca2+ content in mammary gland tissue. However, the AHC diet decreased Ca2+ content. The HC diet induced ER stress in mammary gland tissue by increasing the mRNA and protein expressions of GRP78, CHOP, PERK, ATF6, and IRE1α. The HC diet also activated the IP3R-VDAC1-MCU channel and lead to mitochondrial damage by inhibiting mitochondrial fusion and promoting mitochondrial division, while disodium fumarate could alleviate these changes. In addition, disodium fumarate alleviated oxidative stress induced by the HC diet by activating Nrf2 signaling and reducing ROS production in mammary gland tissue. In conclusion, the supplementation of disodium fumarate at a daily dose of 10 g/sheep enhanced rumen bufferation by maintaining the ruminal pH above 6 and reduced LPS concentration in ruminal fluid and blood. This reaction avoided the negative effect observed by non-supplemented sheep that were fed with a high-concentrate diet involving endoplasmic reticulum stress, oxidative stress, and mitochondrial damage in the mammary gland tissue of Hu sheep

    Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites

    No full text
    Understanding the complete reaction network and mechanism of methanol-to-hydrocarbons remains a key challenge in the field of zeolite catalysis and C1 chemistry. Inspired by the identification of the reactive surface methoxy species on solid acids, several direct mechanisms associated with the formation of the first C-C bond in methanol conversion have been recently disclosed. Identifying the stepwise involvement of the initial intermediates containing the first C-C bond in the whole reaction process of methanol-to-hydrocarbons conversion becomes possible and attractive for the further development of this important reaction. Herein, several initial unsaturated aldehydes/ketones containing the C-C bond are identified via complementary spectroscopic techniques. With the combination of kinetic and spectroscopic analyses, a complete roadmap of the zeolite-catalyzed methanol-to-hydrocarbons conversion from the initial C-C bonds to the hydrocarbon pool species via the oxygen-containing unsaturated intermediates is clearly illustrated. With the participation of both BrĂžnsted and Lewis acid sites in H-ZSM-5 zeolite, an initial aldol-cycle is proposed, which can be closely connected to the well-known dual-cycle mechanism in the methanol-to-hydrocarbons conversion

    Histamine activates inflammatory response and depresses casein synthesis in mammary gland of dairy cows during SARA

    No full text
    Abstract Background Mounting evidences observed that subacute ruminal acidosis (SARA) induced by high concentration (HC) diet increases the translocation of histamine from digestive tract into circulation causing a diverse of diseases in dairy cows. However, it is largely unknown how it does affect the function of mammary gland and milk quality. Hence, this study aims to observe the effects of histamine derived from the digestive tract on the inflammatory response and casein synthesis in the mammary glands during SARA. Twelve cows fitted rumen fistula were randomly divided into either control group administrated low concentration (LC) diet (60% forage, n = 6) or treatment group administrated HC diet (40% forage, n = 6) for 18 weeks. Results Our data showed that HC diet resulted in significant declines in rumen pH value, milk yield and milk quality, as well as longer duration of averaged pH value below 5.6 per day (more than 180 min) compared to LC diet, these findings confirmed SARA occurence. Our study also observed that SARA increased the content of histamine in rumen fluid, plasma, liver and mammary gland, and enhanced the mRNA expression of histamine specific receptor in the mammary gland. Additionally, we found that the mRNA expression of inflammatory response genes in mammary glands was increased, which was consistent with the protein expression results, showing that the protein kinase C(PKC) / nuclear factor kappa B (NF-ÎșB) or protein kinase A (PKA) / NF-ÎșB signalling pathways of the inflammatory response were activated. The mRNA expression of mTOR, P70S6K and αS1 in mammary glands were significantly decreased with the protein expression of mTOR, P70S6K and αS1-casein, and the phosphorylation levels of the mTOR and P70S6K proteins were also decreased. Conclusions Our study showed that the milk protein of lactating cows is depressed after long-term feeding of HC at the individual level, which was paralleled at the gene and protein levels. The inflammatory response in mammary gland caused by histamine derived from the digestive tract is related to the decline of casein synthesis. Our findings point to a new link between the inflammatory response and casein synthesis, but the understanding of the molecular mechanisms involved in this process will require further research
    • 

    corecore