213 research outputs found
Tuning the proximity effect in a superconductor-graphene-superconductor junction
We have tuned in situ the proximity effect in a single graphene layer coupled
to two Pt/Ta superconducting electrodes. An annealing current through the
device changed the transmission coefficient of the electrode/graphene
interface, increasing the probability of multiple Andreev reflections. Repeated
annealing steps improved the contact sufficiently for a Josephson current to be
induced in graphene.Comment: Accepted for publication in Phys. Rev.
Microwave response of an NS ring coupled to a superconducting resonator
A long phase coherent normal (N) wire between superconductors (S) is
characterized by a dense phase dependent Andreev spectrum . We probe this
spectrum in a high frequency phase biased configuration, by coupling an NS ring
to a multimode superconducting resonator. We detect a dc flux and frequency
dependent response whose dissipative and non dissipative components are related
by a simple Debye relaxation law with a characteristic time of the order of the
diffusion time through the N part of the ring. The flux dependence exhibits
periodic oscillations with a large harmonics content at temperatures
where the Josephson current is purely sinusoidal. This is explained considering
that the populations of the Andreev levels are frozen on the time-scale of the
experiments.Comment: 5 pages,4 figure
Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network
We investigate weak localization in metallic networks etched in a two
dimensional electron gas between mK and mK when electron-electron
(e-e) interaction is the dominant phase breaking mechanism. We show that, at
the highest temperatures, the contributions arising from trajectories that wind
around the rings and trajectories that do not are governed by two different
length scales. This is achieved by analyzing separately the envelope and the
oscillating part of the magnetoconductance. For K we find
\Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and
\Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with
the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first
experimental confirmation of the geometry dependence of decoherence due to e-e
interaction.Comment: LaTeX, 5 pages, 4 eps figure
Magnetic Anisotropy Variations and Non-Equilibrium Tunneling in a Cobalt Nanoparticle
We present detailed measurements of the discrete electron-tunneling level
spectrum within nanometer-scale cobalt particles as a function of magnetic
field and gate voltage, in this way probing individual quantum many-body
eigenstates inside ferromagnetic samples. Variations among the observed levels
indicate that different quantum states within one particle are subject to
different magnetic anisotropy energies. Gate-voltage studies demonstrate that
the low-energy tunneling spectrum is affected dramatically by the presence of
non-equilibrium spin excitations
Proximity DC squids in the long junction limit
We report the design and measurement of
Superconducting/normal/superconducting (SNS) proximity DC squids in the long
junction limit, i.e. superconducting loops interrupted by two normal metal
wires roughly a micrometer long. Thanks to the clean interface between the
metals, at low temperature a large supercurrent flows through the device. The
dc squid-like geometry leads to an almost complete periodic modulation of the
critical current through the device by a magnetic flux, with a flux periodicity
of a flux quantum h/2e through the SNS loop. In addition, we examine the entire
field dependence, notably the low and high field dependence of the maximum
switching current. In contrast with the well-known Fraunhoffer-type
oscillations typical of short wide junctions, we find a monotonous gaussian
extinction of the critical current at high field. As shown in [15], this
monotonous dependence is typical of long and narrow diffusive junctions. We
also find in some cases a puzzling reentrance at low field. In contrast, the
temperature dependence of the critical current is well described by the
proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in
the long junction limit. The switching current distributions and hysteretic IV
curves also suggest interesting dynamics of long SNS junctions with an
important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure
Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules
We have altered the superconductivity of a suspended rope of single walled
carbon nanotubes, by coating it with organic polymers. Upon coating, the normal
state resistance of the rope changes by less than 20 percent. But
superconductivity, which on the bare rope shows up as a substantial resistance
decrease below 300 mK, is gradualy suppressed. We correlate this to the
suppression of radial breathing modes, measured with Raman Spectroscopy on
suspended Single and Double-walled carbon nanotubes. This points to the
breathing phonon modes as being responsible for superconductivity in carbon
nanotubes
Phonon assisted dynamical Coulomb blockade in a thin suspended graphite sheet
The differential conductance in a suspended few layered graphene sample is
fou nd to exhibit a series of quasi-periodic sharp dips as a function of bias
at l ow temperature. We show that they can be understood within a simple model
of dyn amical Coulomb blockade where energy exchanges take place between the
charge carriers transmitted trough the sample and a dissipative electromagnetic
envir onment with a resonant phonon mode strongly coupled to the electrons
- …