279 research outputs found

    Espaces de Berkovich sur Z : \'etude locale

    Full text link
    We investigate the local properties of Berkovich spaces over Z. Using Weierstrass theorems, we prove that the local rings of those spaces are noetherian, regular in the case of affine spaces and excellent. We also show that the structure sheaf is coherent. Our methods work over other base rings (valued fields, discrete valuation rings, rings of integers of number fields, etc.) and provide a unified treatment of complex and p-adic spaces.Comment: v3: Corrected a few mistakes. Corrected the proof of the Weierstrass division theorem 7.3 in the case where the base field is imperfect and trivially value

    A Horizon Study for Cosmic Explorer: Science, Observatories, and Community

    Get PDF
    Gravitational-wave astronomy has revolutionized humanity's view of the universe. Investment in the field has rewarded the scientific community with the first direct detection of a binary black hole merger and the multimessenger observation of a neutron-star merger. Each of these was a watershed moment in astronomy, made possible because gravitational waves reveal the cosmos in a way that no other probe can. Since the first detection of gravitational waves in 2015, the National Science Foundation's LIGO and its partner observatory, the European Union's Virgo, have detected over fifty binary black hole mergers and a second neutron star merger -- a rate of discovery that has amazed even the most optimistic scientists.This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push the gravitational-wave astronomy towards the edge of the observable universe (z100z \sim 100). This Horizon Study presents the science objective for Cosmic Explorer, and describes and evaluates its design concepts for. Cosmic Explorer will continue the United States' leadership in gravitational-wave astronomy in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology

    Update on current practice in laboratory medicine in respect of natriuretic peptide testing for heart failure diagnosis and management in Europe. The CARdiac MArker Guideline Uptake in Europe (CARMAGUE) study.

    Get PDF
    BACKGROUND: The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) initiated the CArdiac MARker Guidelines Uptake in Europe (CAMARGUE) Study to survey if current biomarker testing for heart failure (HF) in Europe is in accordance with up-dated guidelines. METHODS: A web-based questionnaire was distributed to clinical laboratories via European biochemical societies in 2019. Questions covered the type of natriuretic peptide (NP) assays performed, decision limits for HF, and opinion concerning requirement of different thresholds in patients with renal failure or obesity. RESULTS: There were 347 participating laboratories mostly from European countries with 266 offering NP testing. NP testing was increased from 67% to 77% between 2013 and 2019. NT-proBNP remained the preferred biomarker. Recommended decision limits were implemented for BNP (85%) and better focused for NT-proBNP (40%) than in the previous survey. The survey revealed that laboratorians are willing to support the translation of adjusted cut-off values for age, gender and for patients with conditions like renal insufficiency. CONCLUSION: Guidelines stimulate clinical laboratories to offer NP testing with high value for the diagnosis and management of HF, and to present adjusted medical decision limits. Future guidelines should encourage the use of personalized cut-offs for some confounding factors

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    corecore