28 research outputs found

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8 TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the bb‟b\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Les anomalies gĂ©nĂ©tiques : dĂ©finition, origine, transmission et Ă©volution, mode d’action

    No full text
    Cet article rappelle les notions et principes relatifs aux anomalies gĂ©nĂ©tiques dont on observe rĂ©guliĂšrement des Ă©mergences dans les populations animales d’élevage. Ces anomalies proviennent de mutations naturelles et certaines d’entre elles voient leur frĂ©quence augmenter du fait principalement de la dĂ©rive gĂ©nĂ©tique, parfois de la sĂ©lection. Lorsqu’elles sont dominantes, elles sont gĂ©nĂ©ralement rapidement contre-sĂ©lectionnĂ©es et tendent Ă  disparaĂźtre. Mais lorsqu’elles sont rĂ©cessives, les cas observables ne reprĂ©sentent qu’une toute petite fraction des individus porteurs. On dĂ©finit gĂ©nĂ©ralement les anomalies gĂ©nĂ©tiques comme des syndromes monogĂ©niques. Toutefois, cette rĂšgle a beaucoup d’exceptions, soit parce que l’anomalie se rĂ©vĂšle plus complexe qu’initialement supposĂ©, soit parce que le syndrome prĂ©sente une variabilitĂ© phĂ©notypique due Ă  des gĂšnes modulateurs. Les anomalies rĂ©cessives sont principalement dues Ă  des mutations de type perte de fonction, tandis que les mutations dominantes rĂ©sultent souvent d’interactions entre gĂšnes ou entre protĂ©ines, ou de l’altĂ©ration d’un gĂšne rĂ©presseur. Les anomalies cytogĂ©nĂ©tiques conduisent Ă  des phĂ©notypes anormaux gĂ©nĂ©ralement diffĂ©rents entre types de caryotypes dĂ©sĂ©quilibrĂ©s. Enfin, les anomalies prĂ©sentent parfois des dĂ©terminismes particuliers, par exemple dans le cas de gĂšnes portĂ©s par les chromosomes sexuels ou soumis Ă  empreinte parentale.This article presents an overview of the concepts and principles relative to genetic abnormalities, for which outbreaks are regularly observed in farm animal populations. These genetic defects originate from natural mutations and the frequency of some of them increases under the effect of genetic drift and sometimes of selection. When they are dominant, they are rapidly counter-selected and tend to disappear. But when they are recessive, the affected cases represent only a very small fraction of carrier individuals. Genetic defects are usually monogenic. However, this rule has many exceptions, either because the abnormality is more complex than initially assumed, or because the phenotype presents a variability caused by modulator genes in addition to the major factor. The recessive defects are mainly caused by loss of function mutations, whereas the dominant mutations often result from interactions between genes or between proteins, or from the loss of function of a repressor gene. Chromosomal abnormalities, when they are not lethal, cause syndromes which may vary between the different types of unbalanced caryotypes. Finally, genetic defects sometimes present very peculiar mechanisms, e.g. when the mutated gene is located on a sex chromosome or when it is imprinted

    Dossier : Anomalies génétiques - Avant-propos

    No full text
    Dossier : Anomalies génétiques - Avant-propo

    Du phénotype à la mutation causale : le cas des anomalies récessives bovines

    No full text
    Cet article prĂ©sente la mĂ©thodologie utilisĂ©e pour identifier la mutation responsable d’une anomalie gĂ©nĂ©tique Ă  partir de cas d’animaux affectĂ©s. Dans un premier temps, une collection de cas aussi homogĂšnes que possible est constituĂ©e, de la mĂȘme race et avec les mĂȘmes signes cliniques, complĂ©tĂ©e par une population tĂ©moin apparentĂ©e mais non atteinte. Une analyse de pedigree est possible pour rechercher l’ancĂȘtre commun qui a pu transmettre l’anomalie Ă  chacun des cas. Le gĂ©notypage par puce permet de mettre en Ă©vidence trĂšs rapidement une petite rĂ©gion du gĂ©nome homozygote et identique Ă  tous les marqueurs qui contient la mutation recherchĂ©e. La mutation est ensuite identifiĂ©e par sĂ©quençage du gĂ©nome de quelques cas, filtrage des variants observĂ©s sur la base d’une part, de leur prĂ©sence chez d’autres animaux, et d’autre part, de leur annotation fonctionnelle. Une validation statistique est ensuite pratiquĂ©e par gĂ©notypage Ă  grande Ă©chelle, pour vĂ©rifier l’association totale entre gĂ©notype et phĂ©notype. Enfin, la causalitĂ© de la mutation est Ă©tudiĂ©e par analyse fonctionnelle, incluant l’analyse des ARN et des protĂ©ines, l’imagerie cellulaire, voire la crĂ©ation de modĂšles transgĂ©niques.This article presents the methodology used to identify the mutation responsible for a genetic defect from the observation of cases. In the first step, a set of homogeneous cases are collected, from the same breed and with the same clinical signs. This collection is completed by a related but unaffected control population. A pedigree analysis is possible to point towards a common ancestor who may have transmitted the defect to all cases. A genotyping step using a SNP chip is used to display a small genomic region homozygous and identical at all markers and including the mutation. The mutation is then identified by genome sequencing of a few cases followed by the filtering of the variants against a large sequence database of unaffected animals. The best candidate variants are retained on the basis of their functional annotation. The mutation is then statistically confirmed on the basis of large scale genotyping, to verify the complete association between the mutation and the phenotype. Finally, the causality of the mutation is proven by functional analysis, including RNA and protein analysis, cellular imaging, and even through transgenic models carrying the mutation

    Anticiper l'émergence d'anomalies génétiques grùce aux données génomiques

    No full text
    Avec le rĂ©cent dĂ©veloppement des approches reposant sur le gĂ©notypage et sĂ©quençage Ă  haut dĂ©bit, identifier la mutation responsable d’une anomalie Ă  partir de quelques cas est beaucoup plus simple qu’auparavant. Toutefois, il n’est pas toujours possible d’observer des cas et de disposer du matĂ©riel biologique correspondant. Cet article prĂ©sente deux approches reposant sur l’analyse de donnĂ©es Ă  haut dĂ©bit, permettant d’identifier des mutations rĂ©cessives lĂ©tales ou d’orienter plus efficacement leur recherche Ă  partir des donnĂ©es de sĂ©quence du gĂ©nome. La premiĂšre approche utilise les donnĂ©es de gĂ©notypage Ă  haut dĂ©bit pour rechercher des rĂ©gions du gĂ©nome prĂ©sentant un dĂ©ficit en homozygotes. Cette mĂ©thode a dĂ©jĂ  permis de caractĂ©riser plusieurs mutations dans chacune des races bovines analysĂ©es. Dans la seconde approche, on recherche dans les donnĂ©es de sĂ©quence disponibles des variants dont l’annotation suggĂšre qu’ils ne sont pas tolĂ©rĂ©s Ă  l’état homozygote. Le nombre de faux positifs est Ă©levĂ©, mais ces donnĂ©es permettent d’orienter la phase d’observation et de diagnostic plus efficacement et, dans les cas les plus favorables, d’anticiper l’émergence de l’anomalie. Des exemples sont fournis avec le gĂšne RP1 responsable de dĂ©gĂ©nĂ©rescence rĂ©tinienne ou le gĂšne EDAR responsable de l’absence de poils et de dents.With the recent development of approaches using high throughput genotyping and sequencing, identifying the causal mutation underlying a genetic defect from several cases has become much simpler. However, cases, or their corresponding biological material, are not always available. This article presents two approaches relying on high throughput data analysis to identify recessive lethal mutations or to efficiently orient their research from genome sequence. The first approach uses genotyping data to look for genomic rĂ©gions presenting a deficit in homozygotes. This method has proven to be efficient with several mutations already characterized in each analyzed bovine breed. In the second approach, DNA variants are searched in the available whole genome sequences, with strong annotations suggesting that they are not tolerated in the homozygous state. The number of false positives is relatively high but these variants can orient the observation step toward mating at risk or homozygous animals and, in the most favorable cases, to anticipate the outbreak of the defect. Examples are provided with the RP1 gene responsible for retina degeneration or the EDAR gene responsible for the ectodermal anhidrotic syndrome
    corecore