186 research outputs found
Ascospore release and survival in Sclerotinia sclerotiorum
The release and survival of ascospores of a UK Sclerotinia sclerotiorum isolate were studied. Apothecia placed in a spore clock apparatus with different lighting regimes at 15 °C released ascospores continuously with an increasing rate for the duration of experiments (72–84 h). Spore release was not confined to light or dark periods in alternating regimes and occurred in continuous dark or light. Ascospores were released in both saturated air (90–95% rh) and at 65–75% rh. High temperature and rh were detrimental to ascospore survival but spore viability was maintained for longer periods than previously reported. The significance of these results in relation to disease control is discussed
Evaluation of the benefits, harms and cost‐effectiveness of potential alternatives to iFOBT testing for colorectal cancer screening in Australia
The Australian National Bowel Cancer Screening Program (NBCSP) will fully roll‐out 2‐yearly screening using the immunochemical Faecal Occult Blood Testing (iFOBT) in people aged 50 to 74 years by 2020. In this study, we aimed to estimate the comparative health benefits, harms, and cost‐effectiveness of screening with iFOBT, versus other potential alternative or adjunctive technologies. A comprehensive validated microsimulation model, Policy1‐Bowel, was used to simulate a total of 13 screening approaches involving use of iFOBT, colonoscopy, sigmoidoscopy, computed tomographic colonography (CTC), faecal DNA (fDNA) and plasma DNA (pDNA), in people aged 50 to 74 years. All strategies were evaluated in three scenarios: (i) perfect adherence, (ii) high (but imperfect) adherence, and (iii) low adherence. When assuming perfect adherence, the most effective strategies involved using iFOBT (annually, or biennially with/without adjunct sigmoidoscopy either at 50, or at 54, 64 and 74 years for individuals with negative iFOBT), or colonoscopy (10‐yearly, or once‐off at 50 years combined with biennial iFOBT). Colorectal cancer incidence (mortality) reductions for these strategies were 51–67(74–80)% in comparison with no screening; 2‐yearly iFOBT screening (i.e. the NBCSP) would be associated with reductions of 51(74)%. Only 2‐yearly iFOBT screening was found to be cost‐effective in all scenarios in context of an indicative willingness‐to‐pay threshold of A2,984/LYS–A$5,981/LYS (depending on adherence). The fully rolled‐out NBCSP is highly cost‐effective, and is also one of the most effective approaches for bowel cancer screening in Australia
Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates
Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate
Molecular diagnosis of Burkitt\u27s lymphoma.
BACKGROUND: The distinction between Burkitt\u27s lymphoma and diffuse large-B-cell lymphoma is crucial because these two types of lymphoma require different treatments. We examined whether gene-expression profiling could reliably distinguish Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma.
METHODS: Tumor-biopsy specimens from 303 patients with aggressive lymphomas were profiled for gene expression and were also classified according to morphology, immunohistochemistry, and detection of the t(8;14) c-myc translocation.
RESULTS: A classifier based on gene expression correctly identified all 25 pathologically verified cases of classic Burkitt\u27s lymphoma. Burkitt\u27s lymphoma was readily distinguished from diffuse large-B-cell lymphoma by the high level of expression of c-myc target genes, the expression of a subgroup of germinal-center B-cell genes, and the low level of expression of major-histocompatibility-complex class I genes and nuclear factor-kappaB target genes. Eight specimens with a pathological diagnosis of diffuse large-B-cell lymphoma had the typical gene-expression profile of Burkitt\u27s lymphoma, suggesting they represent cases of Burkitt\u27s lymphoma that are difficult to diagnose by current methods. Among 28 of the patients with a molecular diagnosis of Burkitt\u27s lymphoma, the overall survival was superior among those who had received intensive chemotherapy regimens instead of lower-dose regimens.
CONCLUSIONS: Gene-expression profiling is an accurate, quantitative method for distinguishing Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma
The ExPeCT (Examining Exercise, Prostate Cancer and Circulating Tumour Cells) trial: study protocol for a randomised controlled trial
Background: Prostate cancer (PrCa) is the second most common cancer in Ireland. Many men present with locally advanced or metastatic cancer for whom curative surgery is inappropriate. Advanced cancer patients are encouraged to remain physically active and therefore there is a need to investigate how patients with metastatic disease tolerate physical activity programmes. Physical activity reduces levels of systemic inflammatory mediators and so an aerobic exercise intervention may represent an accessible and cost-effective means of ameliorating the pro-inflammatory effects of obesity and subsequently decrease poor cancer-specific outcomes in this patient population. This study will assess the feasibility and safety of introducing a structured aerobic exercise intervention to an advanced cancer population. This study will also examine if the evasion of immune editing by circulating tumour cells (CTCs) is an exercise-modifiable mechanism in obese men with prostate cancer. Methods: This international multicentre prospective study will recruit men with metastatic prostate cancer. Participants will be recruited from centres in Dublin (Ireland) and London (UK). Participants will be divided into exposed and non-exposed groups based on body mass index (BMI) ≥ 25 kg/m2 and randomised to intervention and control groups. The exercise group will undertake a regular supervised aerobic exercise programme, whereas the control group will not. Exercise intensity will be prescribed based on a target heart rate monitored by a polar heart rate monitor. Blood samples will be taken at recruitment and at 3 and 6 months to examine the primary endpoint of platelet cloaking of CTCs. Participants will complete a detailed questionnaire to assess quality of life (QoL) and other parameters at each visit. Discussion The overall aim of the ExPeCT trial is to examine the relationship between PrCa, exercise, obesity, and systemic inflammation, and to improve the overall QoL in men with advanced disease. Results will inform future work in this area examining biological markers of prognosis in advanced prostate cancer. Trial registration Clinicaltrials.gov NLM identifier: NCT02453139. Registered on 12 May 2015. This document contains excerpts from the ExPeCT trial protocol Version 1.5, 28 July 2016
- …