16,237 research outputs found
Flueric-controller pneumatic stepping motor system
Nutating stepping motor consists of an output rotating gear and a nutating gear. A flueric logic circuit controls the nutating motor. The complete system constitutes a reliable, open loop actuator system with inherently high output stiffness, reasonable slewing speeds and small step size
Spatial interference from well-separated condensates
We use magnetic levitation and a variable-separation dual optical plug to
obtain clear spatial interference between two condensates axially separated by
up to 0.25 mm -- the largest separation observed with this kind of
interferometer. Clear planar fringes are observed using standard (i.e.
non-tomographic) resonant absorption imaging. The effect of a weak inverted
parabola potential on fringe separation is observed and agrees well with
theory.Comment: 4 pages, 5 figures - modified to take into account referees'
improvement
Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser
This paper summarizes analytical studies and the interpretation of experimental results for the compression and rarefaction waves generated in the cavity of a pulsed CO electric discharge laser. A one-dimensional analysis of acoustic waves is applied to a transversely excited laser. The influences of heating in the cathode fall, heat transfer to the cathode, flow through both the anode and cathode, and bulk heating of the plasma are included. The analysis is used to relate the bulk heating rate to observable features of the pressure and density waves. Data obtained from interferograms and reported elsewhere are used to infer the bulk heating rates in a pulsed CO laser. Results are presented for CO/Ar, CO/N2, and N2 plasmas. Comparison of the data with recent theoretical results for the heating due to electron/ neutral collisions and the anharmonic defect associated with V-V energy transfer shows substantial differences at lower values of total energy deposition. The change of heating with E/N is in fairly good agreement with predicted values
Scalable Peer-to-Peer Streaming for Live Entertainment Content
We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralized or provider-provisioned resources. The system creates a peer-to-peer overlay network, which attempts to optimize use of existing capacity to ensure quality of service, delivering low startup delay and lag in playout of the live content. There are three main aspects of our solution: first, a swarming mechanism that constructs an overlay topology for minimizing propagation delays from the source to end consumers; second, a distributed overlay anycast system that uses a location-based search algorithm for peers to quickly find the closest peers in a given stream; and finally, a novel incentive mechanism that encourages peers to donate capacity even when the user is not actively consuming content
Demonstration of an inductively coupled ring trap for cold atoms
We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
Multiobjective analysis for the design and control of an electromagnetic valve actuator
The electromagnetic valve actuator can deliver much improved fuel efficiency and reduced emissions in spark ignition (SI) engines owing to the potential for variable valve timing when compared with cam-operated, or conventional, variable valve strategies. The possibility exists to reduce pumping losses by throttle-free operation, along with closed-valve engine braking. However, further development is required to make the technology suitable for accept- ance into the mass production market. This paper investigates the application of multiobjective optimization techniques to the conflicting objective functions inherent in the operation of such a device. The techniques are utilized to derive the optimal force–displacement characteristic for the solenoid actuator, along with its controllability and dynamic/steady state performance
Finite temperature excitations of a trapped Bose gas
We present a detailed study of the temperature dependence of the condensate
and noncondensate density profiles of a Bose-condensed gas in a parabolic trap.
These quantitites are calculated self-consistently using the
Hartree-Fock-Bogoliubov equations within the Popov approximation. Below the
Bose-Einstein transition the excitation frequencies have a realtively weak
temperature dependence even though the condensate is strongly depleted. As the
condensate density goes to zero through the transition, the excitation
frequencies are strongly affected and approach the frequencies of a
noninteracting gas in the high temperature limit.Comment: 4 pages, Latex, 4 postscript figures. Submitted to Physical Review
Letter
- …