2 research outputs found

    Multimodality Imaging of Breast Cancer Experimental Lung Metastasis with Bioluminescence and a Monoclonal Antibody Dual-Labeled with <sup>89</sup>Zr and IRDye 800CW

    No full text
    Metastatic breast cancer is incurable. The goal of this study was to develop a positron emission tomography (PET)/near-infrared fluorescent (NIRF) probe for imaging CD105 expression in breast cancer experimental lung metastasis. TRC105, a chimeric anti-CD105 antibody, was dual-labeled with a NIRF dye (IRDye 800CW) and <sup>89</sup>Zr to yield <sup>89</sup>Zr-Df-TRC105-800CW. Luciferase-transfected 4T1 murine breast cancer cells were injected intravenously into female mice to establish the tumor model. Bioluminescence imaging (BLI) was carried out to noninvasively monitor the lung tumor burden. PET imaging revealed that 4T1 lung tumor uptake of <sup>89</sup>Zr-Df-TRC105-800CW was 8.7 ± 1.4, 10.9 ± 0.5, and 9.7 ± 1.1% ID/g at 4, 24, and 48 h postinjection (<i>n</i> = 4), with excellent tumor contrast. Biodistribution studies, blocking, control studies with <sup>89</sup>Zr-Df-cetuximab-800CW, ex vivo BLI/PET/NIRF imaging, and histology all confirmed CD105 specificity of the tracer. Broad clinical potential of TRC105-based agents was shown in many tumor types, which also enabled early detection of small metastasis and intraoperative guidance for tumor removal

    Exploiting the Metal-Chelating Properties of the Drug Cargo for <i>In Vivo</i> Positron Emission Tomography Imaging of Liposomal Nanomedicines

    No full text
    The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (<i>e.g.</i>, bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used ionophores to achieve excellent radiolabeling yields, purities, and stabilities with <sup>89</sup>Zr, <sup>52</sup>Mn, and <sup>64</sup>Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs in humans and may have clinical impact by facilitating the introduction of image-guided therapeutic strategies in current and future nanomedicine clinical studies
    corecore