58 research outputs found

    Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache.</p> <p>Methods</p> <p>Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation.</p> <p>Results</p> <p>Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment.</p> <p>Conclusions</p> <p>Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses contribute to migraine-related pain behavior <it>in vivo</it>. These data provide a cellular mechanism by which IL-6 in the meninges causes sensitization of dural afferents therefore contributing to the pathogenesis of migraine headache.</p

    Pituitary Hormones and Orofacial Pain

    Get PDF
    Clinical and basic research on regulation of pituitary hormones, extra-pituitary release of these hormones, distribution of their receptors and cell signaling pathways recruited upon receptor binding suggests that pituitary hormones can regulate mechanisms of nociceptive transmission in multiple orofacial pain conditions. Moreover, many pituitary hormones either regulate glands that produce gonadal hormones (GnH) or are regulated by GnH. This implies that pituitary hormones may be involved in sex-dependent mechanisms of orofacial pain and could help explain why certain orofacial pain conditions are more prevalent in women than men. Overall, regulation of nociception by pituitary hormones is a relatively new and emerging area of pain research. The aims of this review article are to: (1) present an overview of clinical conditions leading to orofacial pain that are associated with alterations of serum pituitary hormone levels; (2) discuss proposed mechanisms of how pituitary hormones could regulate nociceptive transmission; and (3) outline how pituitary hormones could regulate nociception in a sex-specific fashion. Pituitary hormones are routinely used for hormonal replacement therapy, while both receptor antagonists and agonists are used to manage certain pathological conditions related to hormonal imbalance. Administration of these hormones may also have a place in the treatment of pain, including orofacial pain. Hence, understanding the involvement of pituitary hormones in orofacial pain, especially sex-dependent aspects of such pain, is essential to both optimize current therapies as well as provide novel and sex-specific pharmacology for a diversity of associated conditions

    Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK) may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors.</p> <p>Results</p> <p>To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6) is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE<sub>2 </sub>injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment.</p> <p>Conclusions</p> <p>These results highlight the importance of signaling to translation control in peripheral sensitization of nociceptors and provide further evidence for activation of AMPK as a novel treatment avenue for acute and chronic pain states.</p

    Transcriptome Analysis of the Human Tibial Nerve Identifies Sexually Dimorphic Expression of Genes Involved in Pain, Inflammation, and Neuro-Immunity

    Get PDF
    Sex differences in gene expression are important contributors to normal physiology and mechanisms of disease. This is increasingly apparent in understanding and potentially treating chronic pain where molecular mechanisms driving sex differences in neuronal plasticity are giving new insight into why certain chronic pain disorders preferentially affect women vs. men. Large transcriptomic resources are now available and can be used to mine for sex differences to gather insight from molecular profiles using donor cohorts. We performed in-depth analysis of 248 human tibial nerve (hTN) transcriptomes from the GTEx Consortium project to gain insight into sex-dependent gene expression in the peripheral nervous system (PNS). We discover 149 genes with sex differential gene expression. Many of the more abundant genes in men are associated with inflammation and appear to be primarily expressed by glia or immune cells, with some genes downstream of Notch signaling. In women, we find the differentially expressed transcription factor SP4 that is known to drive a regulatory program, and may impact sex differences in PNS physiology. Many of these 149 differentially expressed (DE) genes have some previous association with chronic pain but few of them have been explored thoroughly. Additionally, using clinical data in the GTEx database, we identify a subset of DE, sexually dimorphic genes in diseases associated with chronic pain: arthritis and Type II diabetes. Our work creates a unique resource that identifies sexually dimorphic gene expression in the human PNS with implications for discovery of sex-specific pain mechanisms

    Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion

    Get PDF
    BACKGROUND: Nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) all play important roles in the development of the peripheral sensory nervous system. Additionally, these growth factors are proposed to modulate the properties of the sensory system in the adult under pathological conditions brought about by nerve injury or inflammation. We have examined the effects of NGF, GDNF and BDNF on adult rat trigeminal ganglion (TG) neurons in culture to gain a better understanding of how these growth factors alter the cytochemical and functional phenotype of these neurons, with special attention to properties associated with nociception. RESULTS: Compared with no growth factor controls, GDNF, at 1 and 100 ng/ml, significantly increased by nearly 100% the number of neurons in culture at 5 days post-plating. A significant, positive, linear trend of increasing neuron number as a function of BDNF concentration was observed, also peaking at nearly 100%. NGF treatment was without effect. Chronic treatment with NGF and GDNF significantly and concentration-dependently increased 100 nM capsaicin (CAP)-evoked calcitonin gene-related peptide (CGRP) release, reaching approximately 300% at the highest concentration tested (100 ng/ml). Also, NGF and GDNF each augmented anandamide (AEA)- and arachidonyl-2-chloroethylamide (ACEA)-evoked CGRP release, while BDNF was without effect. Utilizing immunohistochemistry to account for the proportions of TRPV1- or CGRP-positive neurons under each growth factor treatment condition and then standardizing evoked CGRP release to these proportions, we observed that NGF was much more effective in enhancing CAP- and 50 mM K(+)-evoked CGRP release than was GDNF. Furthermore, NGF and GDNF each altered the concentration-response function for CAP- and AEA-evoked CGRP release, increasing the E(max )without altering the EC(50 )for either compound. CONCLUSIONS: Taken together, our results illustrate that NGF, GDNF and BDNF differentially alter TG sensory neuron survival, neurochemical properties and TRPV1-mediated neuropeptide release in culture. In particular, our findings suggest that GDNF and NGF differentially modulate TRPV1-mediated neuropeptide secretion sensitivity, with NGF having a much greater effect on a per neuron basis than GDNF. These findings are discussed in relation to possible therapeutic roles for growth factors or their modulators in pathological pain states, especially as these relate to the trigeminal system

    Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain

    Get PDF
    Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain

    Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics

    Get PDF
    Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor μ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different μ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies

    The MNK - eIF4E signaling axis contributes to injury-induced nociceptive plasticity and the development of chronic pain

    Get PDF
    Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4E(S209A)). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF-and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2(-/-) mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2 (-/-) mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.National Institutes of Health [R01-NS-065926, R01-GM-102575, R01-NS-073664]; University of Texas STARS program; postdoctoral Consejo Nacional de Ciencia y Tecnologia fellowship program [274414]6 month embargo; published: 2 August 2017.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    AMPK activation regulates P-body dynamics in mouse sensory neurons in vitro and in vivo

    No full text
    Increased mRNA translation in sensory neurons following peripheral nerve injury contributes to the induction and maintenance of chronic neuropathic pain. Metformin, a common anti-diabetic drug and an activator of AMP-activated protein kinase (AMPK), inhibits cap-dependent mRNA translation and reverses mechanical hypersensitivity caused by a neuropathic injury in both mice and rats. P-bodies are RNA granules that comprise sites for metabolizing mRNA through the process of de-capping followed by RNA decay. These RNA granules may also sequester mRNAs for storage. We have previously demonstrated that induction of cap-dependent translation in cultured trigeminal ganglion (TG) neurons decreases P-body formation and AMPK activators increase P-body formation. Here we examined the impact of AMPK activation on protein synthesis and P-body formation in vitro and in vivo on mouse dorsal root ganglion (DRG) neurons. We demonstrate that AMPK activators inhibit nascent protein synthesis and increase P-body formation in DRG neurons. We also demonstrate that mice with a spared-nerve injury (SNI) show decreased P-bodies in the DRG, consistent with increased mRNA translation resulting from injury. Metformin treatment normalizes this effect in SNI mice and increases P-body formation in sham animals. These findings indicate that P-bodies are dynamically regulated by nerve injury in vivo and this effect can be regulated via AMPK activation. Keywords: Processing bodies, AMPK, Metformin, Spared-nerve injury, Translation contro

    Pituitary Hormones and Orofacial Pain

    No full text
    corecore