11 research outputs found
Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems
International audienc
Recommended from our members
Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana.
DNA methylation is an epigenetic mark that is associated with transcriptional repression of transposable elements and protein-coding genes. Conversely, transcriptionally active regulatory regions are strongly correlated with histone 3 lysine 4 di- and trimethylation (H3K4m2/m3). We previously showed that Arabidopsis thaliana plants with mutations in the H3K4m2/m3 demethylase JUMONJI 14 (JMJ14) exhibit a mild reduction in RNA-directed DNA methylation (RdDM) that is associated with an increase in H3K4m2/m3 levels. To determine whether this incomplete RdDM reduction was the result of redundancy with other demethylases, we examined the genetic interaction of JMJ14 with another class of H3K4 demethylases: lysine-specific demethylase 1-like 1 and lysine-specific demethylase 1-like 2 (LDL1 and LDL2). Genome-wide DNA methylation analyses reveal that both families cooperate to maintain RdDM patterns. ChIP-seq experiments show that regions that exhibit an observable DNA methylation decrease are co-incidental with increases in H3K4m2/m3. Interestingly, the impact on DNA methylation was stronger at DNA-methylated regions adjacent to H3K4m2/m3-marked protein-coding genes, suggesting that the activity of H3K4 demethylases may be particularly crucial to prevent spreading of active epigenetic marks. Finally, RNA sequencing analyses indicate that at RdDM targets, the increase of H3K4m2/m3 is not generally associated with transcriptional de-repression. This suggests that the histone mark itself--not transcription--impacts the extent of RdDM
Recommended from our members
Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation.
Histone demethylases-both lysine-specific demethylase 1 (LSD1) and Jumonji-C (JmjC) domain-containing proteins-are broadly implicated in the regulation of chromatin-dependent processes. In Arabidopsis thaliana, histone marks directly affect DNA methylation, and mutations in LSD1 homologues show reduced DNA methylation at some loci. We screened transfer DNA mutations in genes encoding JmjC domains for defects in DNA methylation. Mutations in jmj14 result in reduced DNA methylation in non-CG contexts at targets of DRM2 (domains rearranged methyltransferase 2)-mediated RNA-directed DNA methylation (RdDM), which is associated with an increase in H3K4m3. Unlike other components of RdDM, JMJ14 is not required for de novo methylation of a transgene, suggesting that JMJ14 is specifically involved in the maintenance phase of DRM2-mediated RdDM
SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation.
DNA methylation in Arabidopsis thaliana is maintained by at least four different enzymes: DNA methyltransferase1 (MET1), chromomethylase3 (CMT3), domains rearranged methyltransferase2 (DRM2), and chromomethylase2 (CMT2). However, DNA methylation is established exclusively by the enzyme DRM2, which acts in the RNA-directed DNA methylation (RdDM) pathway. Some RdDM components belong to gene families and have partially redundant functions, such as the endoribonucleases dicer-like 2, 3, and 4, and involved in de novo2 (IDN2) interactors IDN2-like 1 and 2. Traditional mutagenesis screens usually fail to detect genes if they are redundant, as the loss of one gene can be compensated by a related gene. In an effort to circumvent this issue, we used coexpression data to identify closely related genes that are coregulated with genes in the RdDM pathway. Here we report the discovery of two redundant proteins, SNF2-ring-helicase-like1 and -2 (FRG1 and -2) that are putative chromatin modifiers belonging to the SNF2 family of helicase-like proteins. Analysis of genome-wide bisulfite sequencing shows that simultaneous mutations of FRG1 and -2 cause defects in methylation at specific RdDM targeted loci. We also show that FRG1 physically associates with Su(var)3-9-related SUVR2, a known RdDM component, in vivo. Combined, our results identify FRG1 and FRG2 as previously unidentified components of the RdDM machinery
C-terminal domains of histone demethylase JMJ14 interact with a pair of NAC transcription factors to mediate specific chromatin association
International audienc
Recommended from our members
DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation.
As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development