5,912 research outputs found

    Complex networks in brain electrical activity

    Full text link
    We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds'' character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.Comment: 22 pages, 5 figures. Starlab preprint. This version is an attempt to include better figures (no content change

    Nuevas aportaciones al origen ampurdanés del arte románico

    Get PDF

    Shut Up Storefront

    Full text link

    1936, Prolog

    Full text link

    Band gap control via tuning of inversion degree in CdIn2_2S4_4 spinel

    Get PDF
    Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2_2S4_4. Our \textit{ab initio} calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by accurate screened hybrid functional calculations.Comment: In press in Applied Physics Letters (2012); 4 pages, 2 figures, 1 tabl
    • …
    corecore