17 research outputs found

    Regulation of T-cell function by endogenously produced angiotensin II

    No full text
    The adaptive immune response and, in particular, T cells have been shown to be important in the genesis of hypertension. In the present study, we sought to determine how the interplay between ANG II, NADPH oxidase, and reactive oxygen species modulates T cell activation and ultimately causes hypertension. We determined that T cells express angiotensinogen, the angiotensin I-converting enzyme, and renin and produce physiological levels of ANG II. AT1 receptors were primarily expressed intracellularly, and endogenously produced ANG II increased T-cell activation, expression of tissue homing markers, and production of the cytokine TNF-α. Inhibition of T-cell ACE reduced TNF-α production, indicating endogenously produced ANG II has a regulatory role in this process. Studies with specific antagonists and T cells from AT1R and AT2R-deficient mice indicated that both receptor subtypes contribute to TNF-α production. We found that superoxide was a critical mediator of T-cell TNF-α production, as this was significantly inhibited by polyethylene glycol (PEG)-SOD, but not PEG-catalase. Thus, T cells contain an endogenous renin-angiotensin system that modulates T-cell function, NADPH oxidase activity, and production of superoxide that, in turn, modulates TNF-α production. These findings contribute to our understanding of how ANG II and T cells enhance inflammation in cardiovascular disease

    Energy metabolism in human renin-gene transgenic rats: does renin contribute to obesity?

    No full text
    Renin initiates angiotensin II formation and has no other known functions. We observed that transgenic rats (TGR) overexpressing the human renin gene (hREN) developed moderate obesity with increased body fat mass and glucose intolerance compared with nontransgenic Sprague-Dawley (SD) rats. The metabolic changes were not reversed by an angiotensin-converting enzyme inhibitor, a direct renin inhibitor, or by (pro)renin receptor blocker treatment. The obese phenotype in TGR(hREN) originated from higher food intake, which was partly compensated by increases in resting energy expenditure, total thermogenesis (postprandial and exercise activity), and lipid oxidation during the first 8 weeks of life. Once established, the difference in body weight between TGR(hREN) and SD rats remained constant over time. When restricted to the caloric intake of SD, TGR(hREN) developed an even lower body weight than nontransgenic controls. We did not observe significant changes in the cocaine and amphetamine-regulated transcript, pro-opiomelanocortin, both anorexigenic, or neuropeptide Y, orexigenic, mRNA levels in TGR(hREN) versus SD controls. However, the mRNA level of the agouti-related peptide, orexigenic, was significantly reduced in TGR(hREN) versus SD controls at the end of the study, which indicates a compensatory mechanism. We suggest that the human renin transgene initiates a process leading to increased and early appetite, obesity, and metabolic changes not related to angiotensin II. The mechanisms are independent of any currently known renin-related effects
    corecore