4 research outputs found

    Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal

    No full text
    The distribution and origin of shallow gas seeps in the vicinity of the Posolsky Bank in Lake Baikal were studied based on the integration of detailed seismic, multibeam, and hydro-acoustic water-column investigations. In all, 65 acoustic flares have been detected on the Posolsky Fault scarp near the crest of the bank and in a similar, nearby setting at water depths of -43 to -332 m. The seismic data reveal BSRs (bottom-simulating reflectors) occurring up to water depths of -300 m. Calculations involving hydrate stability, heat flow, and topographic modulation based on BSR occurrence and multibeam bathymetry enabled prediction of a methane-ethane gas mixture and heat-flow values that would account for gas hydrate stability in the lake sediments under prevailing ambient conditions. These predictions are supported by ground truth data. The findings suggest that seeps concentrated along the crest of the Posolsky Bank are fed mainly by gas coming from below the base of the gas hydrate stability zone, which would migrate updip via permeable stratigraphic pathways beneath the bank. Gas would ultimately be released into the water column where these pathways are cut off by faults

    Lake Baikal deepwater renewal mystery solved

    No full text
    Deepwater renewal by intrusions and turbulent diffusion in Lake Baikal is very effective despite the enormous depth of up to 1642 m and the permanently stable stratification below similar to 300 m depth. Temperature time series recorded at the bottom of a mooring installed since March 2000 in the South Basin of the lake indicate recurrent freshwater intrusions with volumes of 50 to 100 km 3, about one order of magnitude larger than previously observed intrusions. Numerous mechanisms have been proposed to explain the advective deep water renewal. Here we present for the first time direct observations which prove that they are caused by coastal downwelling and subsequent thermobaric instability along the steep lake shores. Understanding these mechanisms is an important prerequisite for studying biogeochemical cycles, for predicting the effects of climate change on this unique ecosystem and for evaluating the local climate history from the extraordinary sedimentary record of Lake Baikal
    corecore