35 research outputs found

    Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding

    Get PDF
    The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h−1) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.</p

    Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding

    Get PDF
    The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h−1) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.</p

    Supramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn(salphen)s: structural features and application in hydrosilylation catalysis

    Get PDF
    International audienceThe use of the commercially available, bifunctional phosphine 1,3,5-triaza-7-phosphaadamantane (abbreviated as PN 3) in conjunction with a series of Zn(salphen) complexes leads to sterically encumbered phosphine ligands as a result of (reversible) coordinative Zn–N interactions. The solid state and solution phase behaviour of these supramolecular ligand systems have been investigated in detail and revealed their stoichiometries in the solid state observed by X-ray crystallography, and those determined in solution by NMR and UV-Vis spectroscopy. Also, upon application of these supramolecular bulky phosphines in hydrosilylation catalysis employing 1-hexene as a substrate, the catalysis data infer the presence of an active Rh species with two coordinated, bulky PN 3 /Zn(salphen) assembly units having a maximum of three Zn(salphen)s associated per PN 3 scaffold, with an excess of bulky phosphines hardly affecting the overall activity

    A Supramolecular Palladium Catalyst Displaying Substrate Selectivity by Remote Control

    No full text
    Inspired by enzymes such as cytochrome P-450, the study of the reactivity of metalloporphyrins continues to attract major interest in the field of homogeneous catalysis. However, little is known about benefitting from the substrate-recognition properties of porphyrins containing additional, catalytically relevant active sites. Herein, such an approach is introduced by using supramolecular ligands derived from metalloporphyrins customized with rigid, palladium-coordinating nitrile groups. According to different studies (NMR and UV/Vis spectroscopy, XRD, control experiments), the supramolecular ligands are able to accommodate pyridine derivatives as substrates inside the porphyrin pocket while the reactivity occurs at the peripheral side. By simply tuning a remote metal center, different binding events result in different catalyst reactivity, and this enzyme-like feature leads to high degrees of substrate selectivity in representative palladium-catalyzed Suzuki–Miyaura reactions
    corecore