5 research outputs found

    Cortisol shifts financial risk preferences.

    Get PDF
    Risk taking is central to human activity. Consequently, it lies at the focal point of behavioral sciences such as neuroscience, economics, and finance. Many influential models from these sciences assume that financial risk preferences form a stable trait. Is this assumption justified and, if not, what causes the appetite for risk to fluctuate? We have previously found that traders experience a sustained increase in the stress hormone cortisol when the amount of uncertainty, in the form of market volatility, increases. Here we ask whether these elevated cortisol levels shift risk preferences. Using a double-blind, placebo-controlled, cross-over protocol we raised cortisol levels in volunteers over 8 d to the same extent previously observed in traders. We then tested for the utility and probability weighting functions underlying their risk taking and found that participants became more risk-averse. We also observed that the weighting of probabilities became more distorted among men relative to women. These results suggest that risk preferences are highly dynamic. Specifically, the stress response calibrates risk taking to our circumstances, reducing it in times of prolonged uncertainty, such as a financial crisis. Physiology-induced shifts in risk preferences may thus be an underappreciated cause of market instability.This research was supported by a Programme Grant from the Economic and Social Research Council.This is the version of record of the article "Cortisol shifts financial risk preferences" published in PNAS on March 2104 under the PNAS Open Access option. The published version of record is available on the journal website at http://www.pnas.org/cgi/doi/10.1073/pnas.131790811

    Efficacy and safety of baricitinib or ravulizumab in adult patients with severe COVID-19 (TACTIC-R): a randomised, parallel-arm, open-label, phase 4 trial

    Get PDF
    Background From early in the COVID-19 pandemic, evidence suggested a role for cytokine dysregulation and complement activation in severe disease. In the TACTIC-R trial, we evaluated the efficacy and safety of baricitinib, an inhibitor of Janus kinase 1 (JAK1) and JAK2, and ravulizumab, a monoclonal inhibitor of complement C5 activation, as an adjunct to standard of care for the treatment of adult patients hospitalised with COVID-19. Methods TACTIC-R was a phase 4, randomised, parallel-arm, open-label platform trial that was undertaken in the UK with urgent public health designation to assess the potential of repurposing immunosuppressants for the treatment of severe COVID-19, stratified by a risk score. Adult participants (aged ≥18 years) were enrolled from 22 hospitals across the UK. Patients with a risk score indicating a 40% risk of admission to an intensive care unit or death were randomly assigned 1:1:1 to standard of care alone, standard of care with baricitinib, or standard of care with ravulizumab. The composite primary outcome was the time from randomisation to incidence (up to and including day 14) of the first event of death, invasive mechanical ventilation, extracorporeal membrane oxygenation, cardiovascular organ support, or renal failure. The primary interim analysis was triggered when 125 patient datasets were available up to day 14 in each study group and we included in the analysis all participants who were randomly assigned. The trial was registered on ClinicalTrials.gov (NCT04390464). Findings Between May 8, 2020, and May 7, 2021, 417 participants were recruited and randomly assigned to standard of care alone (145 patients), baricitinib (137 patients), or ravulizumab (135 patients). Only 54 (39%) of 137 patients in the baricitinib group received the maximum 14-day course, whereas 132 (98%) of 135 patients in the ravulizumab group received the intended dose. The trial was stopped after the primary interim analysis on grounds of futility. The estimated hazard ratio (HR) for reaching the composite primary endpoint was 1·11 (95% CI 0·62–1·99) for patients on baricitinib compared with standard of care alone, and 1·53 (0·88–2·67) for ravulizumab compared with standard of care alone. 45 serious adverse events (21 deaths) were reported in the standard-of-care group, 57 (24 deaths) in the baricitinib group, and 60 (18 deaths) in the ravulizumab group. Interpretation Neither baricitinib nor ravulizumab, as administered in this study, was effective in reducing disease severity in patients selected for severe COVID-19. Safety was similar between treatments and standard of care. The short period of dosing with baricitinib might explain the discrepancy between our findings and those of other trials. The therapeutic potential of targeting complement C5 activation product C5a, rather than the cleavage of C5, warrants further evaluation

    The Accuracy of central SBP determined from the second systolic peak of the peripheral pressure waveform

    No full text
    Background: Recent evidence suggests that central aortic blood pressure may be a better predictor of cardiovascular risk than peripheral blood pressure. The central SBP (cSBP) can be estimated from the late systolic shoulder of the radial pulse waveform. We compared the second systolic peak of the radial waveform (pSBP2) with the central systolic pressure derived by a generalized transfer function in a large cohort, across a wide age range, of patients from the Anglo-Cardiff Collaborative Trial. We also compared pSBP2 with the true cSBP measured by cardiac catheterization [invasively measured cSBP (cSBPi)]. Methods: Noninvasive measurements were made by applanation tonometry using the SphygmoCor device. The aortic pressure waveform was derived from the radial waveform using a validated transfer function. Invasive measures of cSBPi were carried out in a group of 38 patients undergoing diagnostic cardiac angiography, and radial artery pressure waveforms were simultaneously recorded using the SphygmoCor device. Results: Overall, there was a strong correlation (r = 0.99, P < 0.001) and good agreement between pSBP2 and the derived cSBP (mean difference ± SD 1 ± 4 mmHg). However, there was a systematic bias with a greater difference between these measures at lower average pressures. There was also a strong correlation and good agreement between the invasively measured cSBPi and pSBP2 (r = 0.92, P < 0.001, mean difference 2 ± 6 mmHg). Conclusion: The second systolic shoulder of the peripheral pressure waveform approximates the cSBP in a large cohort of patients across a wide age range, but this may be inaccurate at low SBP values.5 page(s
    corecore