1,508 research outputs found

    Irreducible Hamiltonian BRST-anti-BRST symmetry for reducible systems

    Full text link
    An irreducible Hamiltonian BRST-anti-BRST treatment of reducible first-class systems based on homological arguments is proposed. The general formalism is exemplified on the Freedman-Townsend model.Comment: LaTeX 2.09, 35 page

    Coordination of Foliar and Wood Anatomical Traits Contributes to Tropical Tree Distributions and Productivity along the Malay-Thai Peninsula

    Get PDF
    Drought is a critical factor in plant species distributions. Much research points to its relevance even in moist tropical regions. Recent studies have begun to elucidate mechanisms underlying the distributions of tropical tree species with respect to drought; however, how such desiccation tolerance mechanisms correspond with the coordination of hydraulic and photosynthetic traits in determining species distributions with respect to rainfall seasonality deserves attention. In the present study, we used a common garden approach to quantify inherent differences in wood anatomical and foliar physiological traits in 21 tropical tree species with either widespread (occupying both seasonal and aseasonal climates) or southern (restricted to aseasonal forests) distributions with respect to rainfall seasonality. Use of congeneric species pairs and phylogenetically independent contrast analyses allowed examination of this question in a phylogenetic framework. Widespread species opted for wood traits that provide biomechanical support and prevent xylem cavitation and showed associated reductions in canopy productivity and consequently growth rates compared with southern species. These data support the hypothesis that species having broader distributions with respect to climatic variability will be characterized by traits conducive to abiotic stress tolerance. This study highlights the importance of the well-established performance vs. stress tolerance trade-off as a contributor to species distributions at larger scales

    Towards Interpretable Deep Learning Models for Knowledge Tracing

    Full text link
    As an important technique for modeling the knowledge states of learners, the traditional knowledge tracing (KT) models have been widely used to support intelligent tutoring systems and MOOC platforms. Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design new KT models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as their outputs and working mechanisms suffer from the intransparent decision process and complex inner structures. We thus propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models. Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model by backpropagating the relevance from the model's output layer to its input layer. The experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions, and partially validate the computed relevance scores from both question level and concept level. We believe it can be a solid step towards fully interpreting the DLKT models and promote their practical applications in the education domain

    Unconventional continuous phase transition in a three dimensional dimer model

    Full text link
    Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and are compatible with a tricritical universality class, at variance with previous proposals.Comment: 4 pages, 3 figures; v2: minor changes, published versio

    Triplectic Quantization of W2 gravity

    Get PDF
    The role of one loop order corrections in the triplectic quantization is discussed in the case of W2 theory. This model illustrates the presence of anomalies and Wess Zumino terms in this quantization scheme where extended BRST invariance is represented in a completely anticanonical form.Comment: 10 pages, no figure

    Hamiltonian BRST-anti-BRST Theory

    Get PDF
    The hamiltonian BRST-anti-BRST theory is developed in the general case of arbitrary reducible first class systems. This is done by extending the methods of homological perturbation theory, originally based on the use of a single resolution, to the case of a biresolution. The BRST and the anti-BRST generators are shown to exist. The respective links with the ordinary BRST formulation and with the sp(2) sp(2) -covariant formalism are also established.Comment: 34 pages, Latex fil

    Interacting classical dimers on the square lattice

    Full text link
    We study a model of close-packed dimers on the square lattice with a nearest neighbor interaction between parallel dimers. This model corresponds to the classical limit of quantum dimer models [D.S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett.{\bf 61}, 2376 (1988)]. By means of Monte Carlo and Transfer Matrix calculations, we show that this system undergoes a Kosterlitz-Thouless transition separating a low temperature ordered phase where dimers are aligned in columns from a high temperature critical phase with continuously varying exponents. This is understood by constructing the corresponding Coulomb gas, whose coupling constant is computed numerically. We also discuss doped models and implications on the finite-temperature phase diagram of quantum dimer models.Comment: 4 pages, 4 figures; v2 : Added results on doped models; published versio

    Typical equilibrium state of an embedded quantum system

    Get PDF
    We consider an arbitrary quantum system coupled non perturbatively to a large arbitrary and fully quantum environment. In [G. Ithier and F. Benaych-Georges, Phys. Rev. A 96, 012108 (2017)] the typicality of the dynamics of such an embedded quantum system was established for several classes of random interactions. In other words, the time evolution of its quantum state does not depend on the microscopic details of the interaction. Focusing at the long time regime, we use this property to calculate analytically a new partition function characterizing the stationary state and involving the overlaps between eigenvectors of a bare and a dressed Hamiltonian. This partition function provides a new thermodynamical ensemble which includes the microcanonical and canonical ensembles as particular cases. We check our predictions with numerical simulations.Comment: 1 figure, 5 pages. This article supersedes the part on the equilibrium state in arXiv:1510.0435

    The Physiological Function of von Willebrand's Factor Depends on Its Tubular Storage in Endothelial Weibel-Palade Bodies

    Get PDF
    SummaryWeibel-Palade bodies are the 1–5 μm long rod-shaped storage organelles of endothelial cells. We have investigated the determinants and functional significance of this shape. We find that the folding of the hemostatic protein von Willebrand's factor (VWF) into tubules underpins the rod-like shape of Weibel-Palade bodies. Further, while the propeptide and the N-terminal domains of mature VWF are sufficient to form tubules, their maintenance relies on a pH-dependent interaction between the two. We show that the tubular conformation of VWF is essential for a rapid unfurling of 100 μm long, platelet-catching VWF filaments when exposed to neutral pH after exocytosis in cell culture and in living blood vessels. If tubules are disassembled prior to exocytosis, then short or tangled filaments are released and platelet recruitment is reduced. Thus, a 100-fold compaction of VWF into tubules determines the unique shape of Weibel-Palade bodies and is critical to this protein's hemostatic function
    • …
    corecore