3 research outputs found

    Guaranteeing Convergence of Iterative Skewed Voting Algorithms for Image Segmentation.

    No full text
    <p>In this paper we provide rigorous proof for the convergence of an iterative voting-based image segmentation algorithm called Active Masks. Active Masks (AM) was proposed to solve the challenging task of delineating punctate patterns of cells from fluorescence microscope images. Each iteration of AM consists of a linear convolution composed with a nonlinear thresholding; what makes this process special in our case is the presence of additive terms whose role is to "skew" the voting when prior information is available. In real-world implementation, the AM algorithm always converges to a fixed point. We study the behavior of AM rigorously and present a proof of this convergence. The key idea is to formulate AM as a generalized (parallel) majority cellular automaton, adapting proof techniques from discrete dynamical systems.</p

    Convergence behavior of the Active Mask segmentation algorithm

    No full text
    We study the convergence behavior of the Active Mask (AM) framework, originally designed for segmenting punctate image patterns. AM combines the flexibility of traditional active contours, the statistical modeling power of region-growing methods, and the computational efficiency of multiscale and multiresolution methods. Additionally, it achieves experimental convergence to zero-change (fixed-point) configurations, a desirable property for segmentation algorithms. At its a core lies a voting-based distributing function which behaves as a majority cellular automaton. This paper proposes an empirical measure correlated to the convergence behavior of AM, and provides sufficient theoretical conditions on the smoothing filter operator to enforce convergence.</p

    Active mask segmentation of fluorescence microscope images.

    No full text
    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.</p
    corecore