137 research outputs found

    On Infinite Quon Statistics and "Ambiguous" Statistics

    Get PDF
    We critically examine a recent suggestion that "ambiguous" statistics is equivalent to infinite quon statistics and that it describes a dilute, nonrelativistics ideal gas of extremal black holes. We show that these two types of statistics are different and that the description of extremal black holes in terms of "ambiguous" statistics cannot be applied.Comment: Latex, 9 pages, no figures, to appear in Mod.Phys.Lett.

    Pairing of Parafermions of Order 2: Seniority Model

    Full text link
    As generalizations of the fermion seniority model, four multi-mode Hamiltonians are considered to investigate some of the consequences of the pairing of parafermions of order two. 2-particle and 4-particle states are explicitly constructed for H_A = - G A^+ A with A^+}= 1/2 Sum c_{m}^+ c_{-m}^+ and the distinct H_C = - G C^+ C with C^+}= 1/2 Sum c_{-m}^+ c_{m}^+, and for the time-reversal invariant H_(-)= -G (A^+ - C^+)(A-C) and H_(+) = -G (A^+dagger + C^+)(A+C), which has no analogue in the fermion case. The spectra and degeneracies are compared with those of the usual fermion seniority model.Comment: 18 pages, no figures, no macro

    Gauge-Invariant Approach to Meson Photoproduction Including the Final-State Interaction

    Get PDF
    A gauge-invariant formalism is presented for the practical treatment of photo- and electroproduction of pseudoscalar mesons off nucleons that allows an explicit incorporation of hadronic final-state interactions. The semi-phenomenological approach is based on a field theory developed by one of the authors. It generalizes an earlier approach by allowing for systematic improvement of approximations in a controlled manner. The practical feasibility is illustrated by applying the lowest-order result to the photoproduction of both neutral and charged pions.Comment: Plenary talk given at the N*2005 Workshop (Oct. 2005, Tallahassee, FL); to appear in the Proceedings (to be publ. by WorldScientific

    Strong decays of radially excited mesons in a chiral approach

    Full text link
    We study radial excitations of pseudoscalar and vector (q bar q) mesons within a chiral approach. We derive a general form for a chiral Lagrangian describing processes involving excited pseudoscalar and vector mesons. The parameters of the chiral Lagrangian are fitted using data and previous calculations in the framework of the 3P0 model. Finite-width effects are examined and predictions for mesons previously not discussed are given. Available experimental data is analyzed whenever possible. Possible hints for exotic mesons and open interpretation-issues are discussed.Comment: 16 page

    Spatial-distribution of recombination centers in gaaste - effects of the doping level

    Get PDF
    The distribution in liquid-encapsulated-Czochralski (LEC) GaAs:Te wafers of point and complex defects has been investigated together with their influence on the minority-carrier diffusion length L. Three wafers with different Te-doping concentration (2.2 X 10(17), 4.5 X 10(17), and 1.5 X 10(18) cm-3) have been studied by means of the electron-beam-induced-current (EBIC) mode of scanning electron microscopy and of the surface photovoltage (SPV) method. The morphology and electrical activity of the defects observed across each wafer have been correlated to the formation and distribution of deep electronic levels, which are significantly affected by the tellurium concentration. The diffusion length has been found to be mainly controlled by deep levels associated with dislocations. EBIC localized measurements of L and of the net ionized free-carrier concentration provide evidence for the influence of Te concentration on impurity segregation at complex defects

    Where is the pseudoscalar glueball ?

    Full text link
    The pseudoscalar mesons with the masses higher than 1 GeV are assumed to belong to the meson decuplet including the glueball as the basis state supplementing the standard SU(3)FSU(3)_F nonet of light qqˉq\bar{q} states (u,d,s)(u,d,s). The decuplet is investigated by means of an algebraic approach based on hypothesis of vanishing the exotic SU(3)FSU(3)_F commutators of "charges" and their time derivatives. These commutators result in a system of equations determining contents of the isoscalar octet state in the physical isoscalar mesons as well as the mass formula including all masses of the decuplet: π(1300)\pi(1300), K(1460), η(1295)\eta(1295), η(1405)\eta(1405) and η(1475)\eta(1475). The physical isoscalar mesons ηi\eta_i, are expressed as superpositions of the "ideal" qqˉq\bar{q} states (NN and SS) and the glueball GG with the mixing coefficient matrix following from the exotic commutator restrictions. Among four one-parameter families of the calculated mixing matrix (numerous solutions result from bad quality of data on the π(1300)\pi(1300) and K(1460) masses) there is one family attributing the glueball-dominant composition to the η(1405)\eta(1405) meson. Similarity between the pseudoscalar and scalar decuplets, analogy between the whole spectra of the 0−+0^{-+} and 0++0^{++} mesons and affinity of the glueball with excited qqˉq\bar{q} states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors withdraws his nam

    Probing Noise in Flux Qubits via Macroscopic Resonant Tunneling

    Full text link
    Macroscopic resonant tunneling between the two lowest lying states of a bistable RF-SQUID is used to characterize noise in a flux qubit. Measurements of the incoherent decay rate as a function of flux bias revealed a Gaussian shaped profile that is not peaked at the resonance point, but is shifted to a bias at which the initial well is higher than the target well. The r.m.s. amplitude of the noise, which is proportional to the decoherence rate 1/T_2^*, was observed to be weakly dependent on temperature below 70 mK. Analysis of these results indicates that the dominant source of low frequency (1/f) flux noise in this device is a quantum mechanical environment in thermal equilibrium.Comment: 4 pages 4 figure

    Quantization of the Hall conductivity well beyond the adiabatic limit in pulsed magnetic fields

    Full text link
    We measure the Hall conductivity, σxy\sigma_{xy}, on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in σxy\sigma_{xy} at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for σxy\sigma_{xy} quantization.Comment: 4 pages, 4 figures, submitted to PR

    Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting

    Get PDF
    The reversible phase transition induced by femtosecond laser excitation of Gallium has been studied by measuring the dielectric function at 775 nm with ~ 200 fs temporal resolution. The real and imaginary parts of the transient dielectric function were calculated from absolute reflectivity of Gallium layer measured at two different angles of incidence, using Fresnel formulas. The time-dependent electron-phonon effective collision frequency, the heat conduction coefficient and the volume fraction of a new phase were restored directly from the experimental data, and the time and space dependent electron and lattice temperatures in the layer undergoing phase transition were reconstructed without ad hoc assumptions. We converted the temporal dependence of the electron-phonon collision rate into the temperature dependence, and demonstrated, for the first time, that the electron-phonon collision rate has a non-linear character. This temperature dependence converges into the known equilibrium function during the cooling stage. The maximum fraction of a new phase in the laser-excited Gallium layer reached only 60% even when the deposited energy was two times the equilibrium enthalpy of melting. We have also demonstrated that the phase transition pace and a fraction of the transformed material depended strongly on the thickness of the laser-excited Gallium layer, which was of the order of several tens of nanometers for the whole range of the pump laser fluencies up to the damage threshold. The kinetics of the phase transformation after the laser excitation can be understood on the basis of the classical theory of the first-order phase transition while the duration of non-thermal stage appears to be comparable to the sub-picosecond pulse length.Comment: 28 pages, including 9 figs. Submitted to Phys. Rev. B 14 March 200
    • …
    corecore