69 research outputs found

    Preconditioning Newton-Krylov Methods in Non-Convex Large Scale Optimization

    Get PDF
    We consider an iterative preconditioning technique for non-convex large scale optimization. First, we refer to the solution of large scale indefinite linear systems by using a Krylov subspace method, and describe the iterative construction of a preconditioner which does not involve matrices products or matrices storage. The set of directions generated by the Krylov subspace method is used, as by product, to provide an approximate inverse preconditioner. Then, we experience our preconditioner within Truncated Newton schemes for large scale unconstrained optimization, where we generalize the truncation rule by Nash–Sofer (Oper. Res. Lett. 9:219–221, 1990) to the indefinite case, too. We use a Krylov subspace method to both approximately solve the Newton equation and to construct the preconditioner to be used at the current outer iteration. An extensive numerical experience shows that the proposed preconditioning strategy, compared with the unpreconditioned strategy and PREQN (Morales and Nocedal in SIAM J. Optim. 10:1079–1096, 2000), may lead to a reduction of the overall inner iterations. Finally, we show that our proposal has some similarities with the Limited Memory Preconditioners (Gratton et al. in SIAM J. Optim. 21:912–935, 2011)
    • …
    corecore