4,963 research outputs found
COBE Constraints on a Local group X-ray Halo
We investigate the effect of a putative X-ray emitting halo surrounding the
Local Group of galaxies, and specifically the possible temperature anisotropies
induced in the COBE-DMR four-year sky maps by an associated Sunyaev-Zel'dovich
effect. By fitting the isothermal spherical halo model proposed by Suto et.al.
(1996) to the coadded four-year COBE-DMR 53 and 90 GHz sky maps in Galactic
coordinates, we find no significant evidence of a contribution. We therefore
reject the claim that such a halo can affect the estimation of the primordial
spectral index and amplitude of density perturbations as inferred from the DMR
data. We find that correlation with the DMR data imposes constraints on the
plausible contribution of such an X-ray emitting halo to a distortion in the
CMB spectrum (as specified by the Compton-y parameter), up to a value for R --
the ratio of the core radius of the isothermal halo gas distribution to the
distance to the Local Group centroid -- of 0.68. For larger values of R, the
recent cosmological upper limit derived by COBE-FIRAS provides stronger
constraints on the model parameters. Over the entire parameter space for R, we
find an upper limit to the inferred sky-RMS anisotropy signal of 14 microKelvin
(95% c.l.), a negligible amount relative to the 35 microKelvin signal observed
in the COBE-DMR data.Comment: 4 pages, 3 figures; accepted for publication in MNRAS pink page
The 4 Year COBE DMR data is non-Gaussian
I review our recent claim that there is evidence of non-Gaussianity in the 4
Year COBE DMR data. I describe the statistic we apply, the result we obtain and
make a detailed list of the systematics we have analysed. I finish with a
qualitative understanding of what it might be and its implications.Comment: Proceedings of Rome 3K conference, 5 pages, 3 figure
Application of XFaster power spectrum and likelihood estimator to Planck
We develop the XFaster Cosmic Microwave Background (CMB) temperature and
polarization anisotropy power spectrum and likelihood technique for the Planck
CMB satellite mission. We give an overview of this estimator and its current
implementation and present the results of applying this algorithm to simulated
Planck data. We show that it can accurately extract the power spectrum of
Planck data for the high-l multipoles range. We compare the XFaster
approximation for the likelihood to other high-l likelihood approximations such
as Gaussian and Offset Lognormal and a low-l pixel-based likelihood. We show
that the XFaster likelihood is not only accurate at high-l, but also performs
well at moderately low multipoles. We also present results for cosmological
parameter Markov Chain Monte Carlo estimation with the XFaster likelihood. As
long as the low-l polarization and temperature power are properly accounted
for, e.g., by adding an adequate low-l likelihood ingredient, the input
parameters are recovered to a high level of accuracy.Comment: 25 pages, 20 figures, updated to reflect published version: slightly
extended account of XFaster technique, added improved plots and minor
corrections. Accepted for publication in MNRA
Asymmetries in the CMB anisotropy field
We report on the results from two independent but complementary statistical
analyses of the WMAP first-year data, based on the power spectrum and N-point
correlation functions. We focus on large and intermediate scales (larger than
about 3 degrees) and compare the observed data against Monte Carlo ensembles
with WMAP-like properties. In both analyses, we measure the amplitudes of the
large-scale fluctuations on opposing hemispheres and study the ratio of the two
amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as
measured along the axis of maximum asymmetry, is high at the 95%-99% level
(depending on the particular multipole range included). The axis of maximum
asymmetry of the WMAP data is weakly dependent on the multipole range under
consideration but tends to lie close to the ecliptic axis. In the N-point
correlation function analysis we focus on the northern and southern hemispheres
defined in ecliptic coordinates, and we find that the ratio of the large-scale
fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results
are stable with respect to choice of Galactic cut and also with respect to
frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis
of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements,
added reference
A Bayesian estimate of the skewness of the Cosmic Microwave Background
We propose a formalism for estimating the skewness and angular power spectrum
of a general Cosmic Microwave Background data set. We use the Edgeworth
Expansion to define a non-Gaussian likelihood function that takes into account
the anisotropic nature of the noise and the incompleteness of the sky coverage.
The formalism is then applied to estimate the skewness of the publicly
available 4 year Cosmic Background Explorer (COBE) Differential Microwave
Radiometer data. We find that the data is consistent with a Gaussian skewness,
and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially
no effect on estimates of the power spectrum, if each is regarded as a
separate parameter or if the angular power spectrum is parametrized in terms of
an amplitude (Q) and spectral index (n). Fixing the value of the angular power
spectrum at its maxiumum likelihood estimate, the best fit skewness is
S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the
skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has
S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter
- …