7 research outputs found

    Actin–Curcumin Interaction: Insights into the Mechanism of Actin Polymerization Inhibition

    No full text
    Curcumin, derived from rhizomes of the <i>Curcuma longa</i> plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the “barbed end” of actin is transmitted to the “pointed end”, where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors

    Actin–Curcumin Interaction: Insights into the Mechanism of Actin Polymerization Inhibition

    No full text
    Curcumin, derived from rhizomes of the <i>Curcuma longa</i> plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the “barbed end” of actin is transmitted to the “pointed end”, where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors

    Discrimination of Ligands with Different Flexibilities Resulting from the Plasticity of the Binding Site in Tubulin

    No full text
    Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (Δ<i>H</i> < 0, Δ<i>S</i> > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (Δ<i>H</i> > 0, Δ<i>S</i> > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a “flying trapeze”, whereas TN16 rocks like a “swing cradle”, both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy–enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the “better fit” and “flexibility”’, instead of focusing only on the receptor–ligand interactions

    Discrimination of Ligands with Different Flexibilities Resulting from the Plasticity of the Binding Site in Tubulin

    No full text
    Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (Δ<i>H</i> < 0, Δ<i>S</i> > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (Δ<i>H</i> > 0, Δ<i>S</i> > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a “flying trapeze”, whereas TN16 rocks like a “swing cradle”, both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy–enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the “better fit” and “flexibility”’, instead of focusing only on the receptor–ligand interactions

    Discrimination of Ligands with Different Flexibilities Resulting from the Plasticity of the Binding Site in Tubulin

    No full text
    Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (Δ<i>H</i> < 0, Δ<i>S</i> > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (Δ<i>H</i> > 0, Δ<i>S</i> > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a “flying trapeze”, whereas TN16 rocks like a “swing cradle”, both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy–enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the “better fit” and “flexibility”’, instead of focusing only on the receptor–ligand interactions

    Discrimination of Ligands with Different Flexibilities Resulting from the Plasticity of the Binding Site in Tubulin

    No full text
    Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (Δ<i>H</i> < 0, Δ<i>S</i> > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (Δ<i>H</i> > 0, Δ<i>S</i> > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a “flying trapeze”, whereas TN16 rocks like a “swing cradle”, both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy–enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the “better fit” and “flexibility”’, instead of focusing only on the receptor–ligand interactions

    Discrimination of Ligands with Different Flexibilities Resulting from the Plasticity of the Binding Site in Tubulin

    No full text
    Tubulin, an α,β heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (Δ<i>H</i> < 0, Δ<i>S</i> > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (Δ<i>H</i> > 0, Δ<i>S</i> > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a “flying trapeze”, whereas TN16 rocks like a “swing cradle”, both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy–enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the “better fit” and “flexibility”’, instead of focusing only on the receptor–ligand interactions
    corecore