7,197 research outputs found
Opto-mechanical subsystem with temperature compensation through isothemal design
An opto-mechanical subsystem for supporting a laser structure which minimizes changes in the alignment of the laser optics in response to temperature variations is described. Both optical and mechanical structural components of the system are formed of the same material, preferably beryllium, which is selected for high mechanical strength and good thermal conducting qualities. All mechanical and optical components are mounted and assembled to provide thorough thermal coupling throughout the subsystem to prevent the development of temperature gradients
Experiment definition phase shuttle laboratory, LDRL-10.6 experiment. Shuttle sortie to ground receiver terminal
System development and technology are described for a carbon dioxide laser data transmitter capable of transmitting 400 Mbps over a shuttle to ground station link
Experiment definition phase shuttle laboratory (LDRL-10.6 experiment): Shuttle sortie to elliptical orbit satellite
The following topics were reviewed: (1) design options for shuttle terminal, (2) elliptical orbit satellite design options, (3) shuttle terminal details, (4) technology status and development requirements, (5) transmitter technology, and (6) carbon dioxide laser life studies
Beyond DNA repair: DNA-PK function in cancer.
UNLABELLED: The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK.
SIGNIFICANCE: Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies
Spaceborne CO2 laser communications systems
Projections of the growth of earth-sensing systems for the latter half of the 1980's show a data transmission requirement of 300 Mbps and above. Mission constraints and objectives lead to the conclusion that the most efficient technique to return the data from the sensing satellite to a ground station is through a geosynchronous data relay satellite. Of the two links that are involved (sensing satellite to relay satellite and relay satellite to ground), a laser system is most attractive for the space-to-space link. The development of CO2 laser systems for space-to-space applications is discussed with the completion of a 300 Mpbs data relay receiver and its modification into a transceiver. The technology and state-of-the-art of such systems are described in detail
Geosynchronous Microwave Atmospheric Sounding Radiometer (MASR) feasibility study. Volume 2: Radiometer receiver feasibility
For abstract, see N78-30748
Half-life of the electron-capture decay of 97Ru: Precision measurement shows no temperature dependence
We have measured the half-life of the electron-capture (ec) decay of 97Ru in
a metallic environment, both at low temperature (19K), and also at room
temperature. We find the half-lives at both temperatures to be the same within
0.1%. This demonstrates that a recent claim that the ec decay half-life for 7Be
changes by $0.9% +/- 0.2% under similar circumstances certainly cannot be
generalized to other ec decays. Our results for the half-life of 97Ru,
2.8370(14)d at room temperature and 2.8382(14)d at 19K, are consistent with,
but much more precise than, previous room-temperature measurements. In
addition, we have also measured the half-lives of the beta-emitters 103Ru and
105Rh at both temperatures, and found them also to be unchanged.Comment: 6 pages, 6 figure
Evaporation of Compact Young Clusters near the Galactic Center
We investigate the dynamical evolution of compact young clusters (CYCs) near
the Galactic center (GC) using Fokker-Planck models. CYCs are very young (< 5
Myr), compact (< 1 pc), and only a few tens of pc away from the GC, while they
appear to be as massive as the smallest Galactic globular clusters (~10^4
Msun). A survey of cluster lifetimes for various initial mass functions,
cluster masses, and galactocentric radii is presented. Short relaxation times
due to the compactness of CYCs, and the strong tidal fields near the GC make
clusters evaporate fairly quickly. Depending on cluster parameters, mass
segregation may occur on a time scale shorter than the lifetimes of most
massive stars, which accelerates the cluster's dynamical evolution even more.
When the difference between the upper and lower mass boundaries of the initial
mass function is large enough, strongly selective ejection of lighter stars
makes massive stars dominate even in the outer regions of the cluster, so the
dynamical evolution of those clusters is weakly dependent on the lower mass
boundary. The mass bins for Fokker-Planck simulations were carefully chosen to
properly account for a relatively small number of the most massive stars. We
find that clusters with a mass <~ 2x10^4 Msun evaporate in <~ 10 Myr. A simple
calculation based on the total masses in observed CYCs and the lifetimes
obtained here indicates that the massive CYCs comprise only a fraction of the
star formation rate (SFR) in the inner bulge estimated from Lyman continuum
photons and far-IR observations.Comment: 20 pages in two-column format, accepted for publication in Ap
AAO Starbugs: software control and associated algorithms
The Australian Astronomical Observatory's TAIPAN instrument deploys 150
Starbug robots to position optical fibres to accuracies of 0.3 arcsec, on a 32
cm glass field plate on the focal plane of the 1.2 m UK-Schmidt telescope. This
paper describes the software system developed to control and monitor the
Starbugs, with particular emphasis on the automated path-finding algorithms,
and the metrology software which keeps track of the position and motion of
individual Starbugs as they independently move in a crowded field. The software
employs a tiered approach to find a collision-free path for every Starbug, from
its current position to its target location. This consists of three
path-finding stages of increasing complexity and computational cost. For each
Starbug a path is attempted using a simple method. If unsuccessful,
subsequently more complex (and expensive) methods are tried until a valid path
is found or the target is flagged as unreachable.Comment: 10 pages, to be published in Proc. SPIE 9913, Software and
Cyberinfrastructure for Astronomy IV; 201
- …