128 research outputs found

    The Interaction of Obesity Related Genotypes, Phenotypes, and Economics: An Experimental Economics Approach with Mice

    Get PDF
    Food intake is greatly influenced by economic factors. Consequently, neuroeconomics has been identified as a new and important area for understanding the interaction between genotypes and phenotypes related to food intake. A foundational element of economics is choice between alternatives. Changing food choices are a central element in the explanation of the increasing obesity rates in human populations. The purpose of this research is to incorporate the key element of choice into the investigation of food intake and weight-related phenotypes for mice in an operant chamber setting. Using normal mice, and mice with a mutation in the Tubby gene (Tub-Mut) which results in adult onset obesity, this research will investigate different behavioral responses among genotypes, as well as unexplored phenotype outcomes when mice are confronted with a falling price of a high fat food relative to a low fat food. Results for both genotypes indicate that as the price of the high fat food falls, consumption of that food increases, but consumption of the low fat food does not decrease in a compensatory fashion. For both genotypes, weight and body fat percentage increases with decreasing high fat food price, but ghrelin and leptin levels do not significantly change. The Tub-Mut shows a significant increase in the area under the glucose tolerance curve, suggestive of a diabetic state. These results show that accounting for choice in neuroeconomic studies is important to understanding the complex regulation of body weight and diabetes.Food Consumption/Nutrition/Food Safety,

    Deletion of Nhlh2 Results in a Defective Torpor Response and Reduced Beta Adrenergic Receptor Expression in Adipose Tissue

    Get PDF
    Mice with a targeted deletion of the basic helix-loop-helix transcription factor, Nescient Helix-Loop-Helix 2 (Nhlh2), display adult-onset obesity with significant increases in their fat depots, abnormal responses to cold exposure, and reduced spontaneous physical activity levels. These phenotypes, accompanied by the hypothalamic expression of Nhlh2, make the Nhlh2 knockout (N2KO) mouse a useful model to study the role of central nervous system (CNS) control on peripheral tissue such as adipose tissue.Differences in body temperature and serum analysis of leptin were performed in fasted and ad lib fed wild-type (WT) and N2KO mice. Histological analysis of white (WAT) and brown adipose tissue (BAT) was performed. Gene and protein level expression of inflammatory and metabolic markers were compared between the two genotypes.We report significant differences in serum leptin levels and body temperature in N2KO mice compared with WT mice exposed to a 24-hour fast, suggestive of a defect in both white (WAT) and brown adipose tissue (BAT) function. As compared to WT mice, N2KO mice showed increased serum IL-6 protein and WAT IL-6 mRNA levels. This was accompanied by slight elevations of mRNA for several macrophage markers, including expression of macrophage specific protein F4/80 in adipose, suggestive of macrophage infiltration of WAT in the mutant animals. The mRNAs for beta3-adrenergic receptors (beta3-AR), beta2-AR and uncoupling proteins were significantly reduced in WAT and BAT from N2KO mice compared with WT mice.These studies implicate Nhlh2 in the central control of WAT and BAT function, with lack of Nhlh2 leading to adipose inflammation and altered gene expression, impaired leptin response to fasting, all suggestive of a deficient torpor response in mutant animals

    Design of the Spitzer Space Telescope Heritage Archive

    Get PDF
    It is predicted that Spitzer Space Telescope’s cryogen will run out in April 2009, and the final reprocessing for the cryogenic mission is scheduled to end in April 2011, at which time the Spitzer archive will be transferred to the NASA/IPAC Infrared Science Archive (IRSA) for long-term curation. The Spitzer Science Center (SSC) and IRSA are collaborating to design and deploy the Spitzer Heritage Archive (SHA), which will supersede the current Spitzer archive. It will initially contain the raw and final reprocessed cryogenic science products, and will eventually incorporate the final products from the Warm mission. The SHA will be accompanied by tools deemed necessary to extract the full science content of the archive and by comprehensive documentation

    Lessons Learned during the Transition to Online Learning in a University Nutrition and Exercise Department

    Get PDF
    In the spring semester of 2020, the COVID-19 pandemic led to an unprecedented shift from face-to-face learning to an instantaneous online learning environment. At the time, the department of Human Nutrition, Foods, and Exercise (HNFE) at Virginia Tech had few online class offerings. Twenty-nine Spring 2020 HNFE classes were transitioned from traditional face-to-face offerings to online delivery models. Many members of the HNFE faculty have strong pedagogical training, but the immediate pedagogical shift in the middle of the semester gave little time for adequate course design geared toward online learning. As such, the purpose of this study was to evaluate student perceptions of the transition to online learning. A departmental survey employing quantitative and qualitative questions was used to assess students’ learning experiences in the spring of 2020 and then re-employed at the conclusion of the Fall 2020 semester to re-assess students’ online course experience and identify if the department was improving in online course delivery. An additional component of the survey specifically evaluated students’ self-perceived motivation for learning. Examples of educational and logistical strategies in online learning environments implemented by instructors and findings of students’ experiences from both surveys will be shared

    Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder

    Full text link
    We present results from a new incoherent-beam Fast Radio Burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution's slope, αlogNlogS\alpha\equiv-\frac{\partial \log N}{\partial \log S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power-law with α=0.7\alpha=0.7, we would expect an FRB detection every few days, making this the fastest survey on sky at present. We collected 1268 hours of data, amounting to one of the largest exposures of any FRB survey, with over 2.4\,×\times\,105^5\,deg2^2\,hrs. Having seen no bursts, we have constrained the rate of extremely bright events to < ⁣13<\!13\,sky1^{-1}\,day1^{-1} above \sim\,220(τ/ms)\sqrt{(\tau/\rm ms)} Jy\,ms for τ\tau between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also allows us to rule out α0.9\alpha\lesssim0.9 with 95%\% confidence, after marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we show that for a cosmological population and a large dynamic range in flux density, α\alpha is brightness-dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments

    The second set of pulsar discoveries by CHIME/FRB/Pulsar: 14 Rotating Radio Transients and 7 pulsars

    Full text link
    The Canadian Hydrogen Mapping Experiment (CHIME) is a radio telescope located in British Columbia, Canada. The large field of view (FOV) of \sim 200 square degrees has enabled the CHIME/FRB instrument to produce the largest FRB catalog to date. The large FOV also allows CHIME/FRB to be an exceptional pulsar and Rotating Radio Transient (RRAT) finding machine, despite saving only the metadata information of incoming Galactic events. We have developed a pipeline to search for pulsars/RRATs using DBSCAN, a clustering algorithm. Output clusters are then inspected by a human for pulsar/RRAT candidates and follow-up observations are scheduled with the more sensitive CHIME/Pulsar instrument. The CHIME/Pulsar instrument is capable of a near-daily search mode observation cadence. We have thus developed the CHIME/Pulsar Single Pulse Pipeline to automate the processing of CHIME/Pulsar search mode data. We report the discovery of 21 new Galactic sources, with 14 RRATs, 6 regular slow pulsars and 1 binary system. Owing to CHIME/Pulsar's daily observations we have obtained timing solutions for 8 of the 14 RRATs along with all the regular pulsars. This demonstrates CHIME/Pulsar's ability at finding timing solutions for transient sources

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    The NANOGrav 12.5-Year Data Set:Dispersion Measure Misestimations with Varying Bandwidths

    Get PDF
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches

    An unusual pulse shape change event in PSR J1713+0747 observed with the Green Bank Telescope and CHIME

    Full text link
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between April 16 and 17, 2021 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multi-frequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the 100-meter Green Bank Telescope (GBT) in a three-year period encompassing the shape change event, between February 2020 and February 2023. As of February 2023, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying TOA residuals display a strong non-monotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν\nu) nor a change in dispersion measure (DM) alone (which would produce a delay proportional to ν2\nu^{-2}). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747 (Demorest et al. 2013; Lam et al. 2016), as well as to a similar event observed in PSR J1643-1224 in 2015 (Shannon et al. 2016).Comment: 19 pages, 8 figures. Submitted to ApJ. Data available at https://doi.org/10.5281/zenodo.723645
    corecore