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The Interaction of Obesity Related Genotypes, Phenotypes, and Economics: An 
Experimental Economics Approach with Mice 

 

Abstract 

Food intake is greatly influenced by economic factors.  Consequently, neuroeconomics has been 

identified as a new and important area for understanding the interaction between genotypes and 

phenotypes related to food intake.  A foundational element of economics is choice between 

alternatives. Changing food choices are a central element in the explanation of the increasing 

obesity rates in human populations. The purpose of this research is to incorporate the key 

element of choice into the investigation of food intake and weight-related phenotypes for mice in 

an operant chamber setting. Using normal mice, and mice with a mutation in the Tubby gene 

(Tub-Mut) which results in adult onset obesity, this research will investigate different behavioral 

responses among genotypes, as well as unexplored phenotype outcomes when mice are 

confronted with a falling price of a high fat food relative to a low fat food.  Results for both 

genotypes indicate that as the price of the high fat food falls, consumption of that food increases, 

but consumption of the low fat food does not decrease in a compensatory fashion. For both 

genotypes, weight and body fat percentage increases with decreasing high fat food price, but 

ghrelin and leptin levels do not significantly change. The Tub-Mut shows a significant increase 

in the area under the glucose tolerance curve, suggestive of a diabetic state. These results show 

that accounting for choice in neuroeconomic studies is important to understanding the complex 

regulation of body weight and diabetes.   
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1. Introduction 
 
There is no debate that genetics and the environment interact in determining health outcomes in 

individuals and yet we know very little about this interaction.  Biological sciences have tended to 

study genetic factors in isolation from environmental factors.  Behavioral sciences, such as 

economics, have tended to study the environment in isolation from genetics.  Indeed, in health 

economics, one could argue that all of the analysis of economic factors affecting health is done 

within the ‘black box’ of reduced form analysis because we do not know the biological 

mechanisms through which these effects occur.  For example, the literature is replete with 

analyses looking at the relationship between income, prices, and health indicators (mortality, 

disease frequency) but we currently do not remotely understand how these economic factors 

affect specific biological outcomes determining diseases (e.g., cortisol levels, cholesterol levels, 

blood pressure).  As Deaton [1] (2002 Health Affairs) states, “Policy cannot be intelligently 

conducted without an understanding of mechanisms; correlations are not enough.”   

Two of the main problems in understanding the economic-biological mechanism 

connection in humans are the lack of sufficient data connecting economics and biology and, 

more importantly, the insufficient control of confounding factors in observational human studies 

that can distort causal inferences [1].  The nascent interdisciplinary field of neuroeconomics, that 

integrates behavioral and biological analyses into a single overarching framework, is starting to 

confront these issues, often employing operant chamber animal models. Operant chamber animal 

models are appealing because confounding factors can be controlled through experimental 

design and detailed biological data can be generated in response to changes in the economic 

environment (e.g., at the organ level, tissue level, and even cellular level) in a relatively short 
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time.  Given the biological sciences have for centuries studied animals to draw inferences about 

humans, the initial main concern may be the proximity of the economic behaviors of animals 

with humans.  For basic economic principles, this is no concern.  There is a substantial economic 

literature, being published in some of the most prestigious economic journals, on the 

transcendence of basic economic principles to other species (e.g. [2]).  

The purpose of this research is to ask if food choice and genotype affect body weight-

related phenotypes in a food cost choice setting.  The specific experiment reported here is 

motivated by the common argument that the increased consumption of high energy-dense food 

relative to low energy-dense food has been s a major contributor to the current obesity epidemic 

[3-5].  Although there are numerous environmental factors affecting food consumption, 

economic factors appear especially important [4, 6-9]. As stated by Vaughan and Rowland [10], 

“There is a pressing need to understand at a fundamental level the interactions between genes 

and economic change in the environment”, and, “economic decision-making is central to 

understanding how much and when organisms eat” [11]. The nascent field of neuroeconomics 

seeks to unravel the relationship between economic decision making, genotypes, and resulting 

phenotypes and will offer novel insights connecting behavioral and biological sciences [11].  

A key determinant in economic decisions is the cost, or price, of obtaining a good. As the 

price of the good increases the quantity of the good consumed decreases; this is known as the 

simple law of demand. Through novel experiments, several authors have demonstrated that mice 

and other species follow this simple law of demand and that food intake will decrease as price 

increases [10-14]. 

The simple law of demand is a special case of the more general law of demand that is based 

on the cornerstone of economics: choice between alternatives [15]. Accounting for choice is 
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especially important for phenotypes related to food intake and obesity, because different foods 

have different nutritional characteristics, which in turn can affect obesity-related phenotypes in 

different ways. For example, if two foods are considered substitutes, as the price of one 

increases, consumption of that food will decrease, but consumption of the other food will 

increase in a compensatory or substitution fashion. Consequently, the weight of the animal could 

decrease or increase depending on the relative consumption of the two foods and their nutritional 

characteristics. Alternatively, if two foods are considered complements, as the price of one food 

increases, the consumption of both foods will decrease and weight will decrease. Finally, if two 

foods are considered independent, then the consumption of one food is not affected by the price 

of the other. This does not imply weight will necessarily decrease if the price of a food is 

increased. Consumption of the other food will not change and it may be consumption of this 

other food that is contributing more to weight. The general law of demand accounts not only for 

changes in consumption of the good whose price changed (called the own price effect), but also 

how that change in price may have cross-over effects on the consumption of other goods via 

choice (called the cross-price effect).  Of course, similar to a single food case, in a two-food 

setting there also may be differences between genotypes in behavioral responses that may lead to 

differences in phenotypes.    

  This research therefore extends the current literature regarding mouse neuroeconomic 

genotypes and food intake to ask if food choice and genotype affect body weight-related 

phenotypes in a food cost choice setting. In addition to reporting on food intake (low fat, high 

fat, total) and body weight, we also consider several phenotypes that have not been examined in 

previous food cost studies: percentage of body fat, serum ghrelin levels, serum leptin levels, and 

glucose tolerance. While earlier studies have considered economic choice experiments for other 
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species [2], this protocol has not been applied to mice. Similar to the studies of Vaughan and 

Rowland [10] who use mice in single food economic studies, there is interest in whether this 

protocol is applicable to mice as they are the most prevalent model for genetic research related to 

food intake and body weight. We chose to investigate differences between mice with a mutation 

in the Tubby gene (Tub-Mut) and normal mice, both of which are genotypes that have not been 

compared in the literature of operant behavior and food intake. This mutant mouse model 

displays adult-onset obesity with a phenotype of slight hypophagia and reduced overall physical 

activity levels in an ad lib food setting, suggestive of a defect in behavioral motivation for food 

or exercise [16]. Thus, the study will examine the effect of choice on body weight parameters, as 

well as the effect of genotype in a mouse obesity model shown to have reduced behavioral 

motivation for activities requiring work.   

2. Materials and Methods 

2.1 Animals and Environment 
 

Six Tub Mutant (MUT) (Tub-Mutant C57BL/6) and four Wildtype (WT) (C57BL/6) female mice 

were obtained from colonies maintained at Virginia Polytechnic Institute and State University, 

from breeding pairs obtained through The Jackson Labs (Bar Harbor, ME). Mice were genotyped 

using published procedures [17]. At 6-8 weeks of age all mice were moved to individual shoebox 

cages with access to water and two jars of 20 mg pellets ad lib. One jar contained a low-fat (LF) 

diet based on the AIN-93g formulation with 16.7% fat, 19.1% protein, and 64.2% carbohydrates 

[18]. The other jar contained a modified high-fat (HF) diet (35.2% fat, 19% protein, and 45.8% 

carbohydrates). The diets were formulated to be isocaloric to control for the potential 

confounding effects of different calorie levels and were supplied by Bio-Serv. (Frenchtown, NJ). 
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Mice remained in the shoebox cages until they had adapted to the new food, which usually took 

2-5 days. After a 12 hr fast, mice were then moved to individual operant chambers measuring 18 

x 20 x 14 cm with a steel rod floor. Two levers protruded on one wall of the operant chamber 

and, internal to the levers, two recessed food troughs. Small cue lights above each lever and each 

trough indicated operational status (see below). Ad lib water was available from a spout centrally 

located on the wall opposite the levers.  Each operant chamber was housed within a sound 

attenuated cubicle (77 x 50 x 49 cm) containing a ventilation fan and house light. Operant 

chambers and housing cubicles, along with computer software, were made by LaFayette 

Instrument Company (Lafayette, IN). The animals were supplied with a Shepherd Shack 

(Shepherd Specialty Papers, Milford, NJ) and a neslet (Ancare, Bellmore, NY). Mice remained 

in the operant chamber through the entirety of the experiments, with the exception of 30 minutes 

at the end of each day when they were removed for cage cleaning and phenotypic measurements.   

2.2 Shaping and Food Procurement Schedule 
 

An argument for the increase in obesity in humans is that high fat foods have become cheaper 

relative to low fat foods [6-8, 19-21]. The goal of this experiment was to mimic this change and 

determine how the mice would respond as the price of high fat food decreased relative to the 

price of low fat food. Consequently, mice first had to be acclimated to a high price level, which 

for this study is 40 lever presses per pellet, also known as a consumatory fixed ratio (CFR). Food 

levers and dispensers were operational from 5:00 PM until 9:00 AM everyday for a 16:8 hr 

feeding/non-feeding cycle. During the feeding cycle, a purchase transaction proceeded as 

follows. To begin, a cue light above each lever was on.  Once the mouse engaged the lever for 

the chosen food, the cue light of the other food turned off and the lever for that food became 

inactive. Once the mouse completed all the lever presses required to dispense a pellet for the 
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chosen food, the cue light over the lever would turn off, the cue light over the associated trough 

would turn on for two seconds, and the the pellet would be delivered. This would complete the 

transaction and the system would reset with both lever cue lights turned back on, and the trough 

lights turned off. Over a four week period, mice were progressed through equal CFR schedules 

with equal cue light intensity until they reached a CFR of 40 lever presses per pellet for both the 

low and high fat diets. Every time the prices were changed, the foods were rotated to discourage 

lever bias (2). The weight and consumption of each mouse was monitored daily to ensure they 

were eating and maintaining weight. 

Once the mice reached the starting prices of 40-40, they were then progressed through the 

following CFR schedules for the low fat and high fat foods, respectively: 40-40, 40-30, 40-20, 

and 40-10 presses per pellet. Schedules were in place for 7-10 days and foods were rotated 

weekly when prices changed. To help reduce learning time, the cue light for low fat high-priced 

food was set at a slightly lower illumination intensity than the high fat low-priced food.  

Software from Lafayette Instruments controlled the operant chambers and recorded the number 

of presses and pellets released. 

 

2.3 Outcome Procedures and Measures 
 

In addition to daily intake and weight measures, body fat percentage was measured weekly with 

a whole body magnetic resonant imaging (MRI) using a Bruker LF90 NMR analyzer (Bruker 

Corporation, Billrica, MA). The MRI was conducted on the last day of each schedule (for the 

starting schedule it was conducted the day before the starting schedule began). A glucose 

tolerance test (GTT) was conducted on each mouse at the beginning of the 40-40 CFR schedule 

and again at the end of the final 40-10 CFR schedule. Prior to the test, mice were food deprived 
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for 12 hours. Tail blood was taken for the fasted measurement and glucose (2g/kg in sterile PBS) 

was injected intraperitoneally (IP). Tail blood was obtained at 15, 30, 60, 90 and 120 minutes 

following the injection. Glucose in tail blood was measured using a glucometer (One-Touch 

Basic, Lifescan, Milpitas CA). At the beginning of the 40-40 CFR schedule, at the end of the 

final 40-10 CFR schedule, and one day prior to the day of the GTT, blood samples were 

collected via the cheek pouch bleeding procedure [22]. Blood samples were processed to obtain 

leptin and ghrelin levels using commerically available kits (Alpha Diagnostics Mouse Leptin 

Elisa, San Antonio, TX; Millipore Mouse Total Ghrelin Elisa Kit, Billerica, MA). Vaginal 

smears were taken daily for estrous cycle determination with no significant differences with 

respect to stage of cycle and other measures noted (data not shown). 

2.3 Data Analysis 
 

For data analysis, measures were either daily (food intake and body weight), weekly (body fat 

percentage), or beginning and ending (ghrelin, leptin, and GTT) for each mouse. Because intake 

and weight were measured daily, we used the mean values over the last four days of each 

schedule. Body fat percentage, ghrelin and leptin levels, and GTT were used as measured. 

Parameters are estimated using repeated measurement two way and one way ANOVAs and post 

hoc Tukey honestly significant difference (HSD) tests.  

3. Results 

3.1 Effect on food intake 
 

The effects of changing price on the quantity of high fat, low fat, and total pellets consumed are 

shown in Fig. 1. The change in price of high fat diet on high fat consumption (the own price 
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effect) had a negative effect [F(3,24) = 5.86, P < .01], and there was no significant main or 

interaction effects of genotype (Fig 1A). From the initial price of 40 to the final price of 10, 

mean consumption of the high fat diet across genotypes more than doubled from 46 pellets per 

day to 110, which was statistically significant at P < .05. The complete post hoc Tukey HSD 

tests indicated that 10 > 30, 10 > 40, and 20 > 40 were significant (Ps <.05), but adjacent pairs 

were not different, indicating that the change in food intake was gradual. A closer genotype 

consideration by one way ANOVA revealed a highly significant own price effect for MUT mice 

[F(3,15) = 6.42, P < .01] and the post hoc Tukey HSD tests indicated that 10 > 30, 10 > 40, and 

20 > 30 (Ps <.05). One-way ANOVA for WT indicated no significant price effect on high fat 

consumption. Thus, MUT animals ate significantly more high fat food overall compared to WT 

animals. 

  The effect of the change in price of high fat diet on low fat consumption (the cross price 

effect) was not significant (Fig 1B). There was also no significant main genotype or interaction 

effect with genotype. One-way ANOVA by genotype revealed that price effect was significant 

for the MUT mice [F(3,15) = 3.29, P < .05] but this was mainly due to a single statistically 

significant decrease of low fat food consumption of 47 grams between the 30 and 10 price setting 

(P < .05).  For the WT mice, there was no significant cross price effect. Because weight is 

affected by total caloric intake (not just high fat or low fat), Fig 1C shows the effects of the 

changing price on the quantity of total pellets consumed. Similar to the own price effect, the 

effect of the change in price of high fat diet on total consumption was negative [F(3,24) = 7.64, 

P < .01], but there was no significant main or interaction effects of genotype (Fig 1C). The 

significant differences were that 10 > 40, 20 > 40 (P < .05) and 10 > 30 (P < .06).  One way 

ANOVA revealed a highly significant price effect on total intake for the MUT mice [F(3,15) = 
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7.42, P < .01], but an insignificant price effect on total intake for the WT mice. Thus, MUT mice 

showed an overall higher total consumption compared to WT mice over the course of the study. 

This higher total consumption was due to the higher consumption of the lower priced high fat 

food and no significant change in the consumption of low fat food. 

3.2 Effects on body weight and body fat percentages 
 

The effect of the changing price on weight is shown in Fig. 2A.  As the price of the high 

fat diet decreased, weight increased [F(3,24) = 12.45, P < .01] and results were similar between 

genotypes, as there was no significant main or interaction effects of genotype (Fig 2A).  The post 

hoc Tukey HSD tests indicated that 10>20>30 and 10>40 (Ps <.05).  One-way ANOVA 

indicated that the price change effect on body weight was significant for both the MUT and WT 

(Ps <.01). Thus, regardless of genotype, these data suggest an overall weight gain as the price of 

high fat food is decreased. 

There are more differences across genotype in terms of the change in body fat percentage 

(Fig 2B). The price change effect on body fat percentage was negative [F(3,24) = 4.78, P < .01] 

and there was a significant genotype effect [F(3,24) = 20.50, P < .01] and to a lesser extent a 

significant interaction effect [F(3,24) = 2.42, P < .10].  One way ANOVA analysis by genotype 

showed that the price effects were significant for the MUT [F(3,15) = 9.32, P < .01], with the 

Tukey HSD being 10 > 30, 10 > 40 (P < .05), and 10 > 20 (P < .10). Alternatively, for the WT 

mice there were no significant differences in body fat percentage related to price. Results 

therefore indicate that body fat levels in MUT animals were responsive to price, with MUT 

having higher body fat percentages. 
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3.3 Effects on gherlin and leptin levels 
 

Figure 3 shows the relationship between price and the ghrelin levels (Fig 3A) and leptin 

levels (Fig 3B). Together the results clearly show that mean ghrelin and leptin levels increased 

between the high price level of 40 and the low price of 10. There was, however, a great deal of 

variability around these means and there were no significant price, genotype, or price-genotype 

interaction effects between price and ghrelin levels or leptin levels.   

3.4 Effects on glucose tolerance test 
 

Figure 4 shows the relationship between price and glucose tolerance test results for both 

genotypes. The average blood glucose curves for each genotype given a glucose tolerance test 

after the high and low price schedules are shown in Fig. 4A (WT) and Fig 4B (MUT).  In MUT 

animals, blood glucose levels declined more slowly following low priced high fat food price 

schedule. In WT there was no effect on the curve at either price schedule. This is shown more 

clearly in Fig. 4C, which displays the area under the curve (AUC) for both genotypes at each 

price schedule. The price change effect on AUC was negative [F(1,8) = 5.70, P < .05] and there 

was a significant genotype effect [F(1,8) = 10.31, P < .05] with a less significant price-genotype 

interaction effect [F(1,8) = 4.28, P < .10]. As shown in Fig 4C, these significant price effects 

were associated with the MUT mice [F(1,5) = 10.82, P < .05], as there was no significant price 

effect for the WT mice. Results suggest there is an improvement in glucose tolerance when 

prices of high fat food are high. However, neither genotype showed an overt glucose intolerance 

phenotype with low-priced high fat food. 
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4. Discussion 
 

This study shows that a choice-based operant chamber protocol can be applied to mice 

with general results comparable to other species. As in studies using other species and consistent 

with economic theory [13, 17, 23-25], mice respond to economic incentives in a choice 

environment. For MUT and WT mice together, as the price of the high fat food decreased 

relative to the low fat (isocaloric) food, the average consumption of high fat food significantly 

increased following the law of demand, which is consistent with numerous single food foraging 

studies [10-14]. Somewhat more surprising is that the average consumption of the low fat food 

did not change, indicating there was no significant cross-price effect and no compensatory 

decrease in the consumption on average. In economic parlance, the foods are classified as 

independent, so it is not just the increase in high fat food that is contributing to weight gain and 

the other phenotype changes, but also the lack of a compensatory decrease in the consumption of 

the low fat (isocaloric) food.  Nothing from economic theory rules out this possibility as the 

degree of substitution will depend on numerous factors, such as the context, quality similarities, 

purpose similarities [24], and even the type of substitution being measured (e.g., net versus gross 

[15]). Taken together, the total food intake (high + low fat) increased as the price of high fat food 

decreased. Importantly, the MUT mice did show greater responses in high fat, low fat, and total 

intake to the price change than did the WT mice, but these response differences were not 

statistically significant. These results are in contrast to those obtained by Coyle, Strand, and 

Good [16] with WT and Tub-Mut mice of a similar age and over a similar time frame (5-20 

weeks) but in an ad lib feeding environment with a single food. Specifically, Coyle, Strand, and 

Good [16] report a daily mean consumption for WT of ~4.30 g/day but for MUT ~4.0 g/day (P < 
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0.01), indicating MUT mice ate less than WT in their ad lib setting. Alternatively, in our operant 

chamber economic setting, daily mean total intake for each genotype was about half of the 

expected ad lib intake, and there were no significant differences between TUB-MUT and WT. 

Specifically, at 20 mg per pellet, our daily mean total consumption over the length of this study 

was ~2.16 g/day for MUT and ~1.92g/day for WT and these amounts were not statistically 

different. Some of these discrepancies may be attributable to differences in kcals/gram. Our 

pellets had 3.77kcals/gram, whereas the standard chow fed by Coyle, Strand, and Good [16] had 

3.02 kcals/gram, but these differences do not contribute to the reversal in relative consumption 

between genotypes. Thus, in our non ad libitum environment, hypophagia for the MUT mice 

disappears, and there is an overall slight but non-significant increase in intake (0.95 kcal/day) for 

the MUT mice relative to WT mice.  

With respect to weight in a single food setting, the relationship between food price and 

weight is expected to mimic the simple law of demand: as the price goes up (down) intake and 

weight would therefore decrease (increase). In various settings, this result has been confirmed 

[14, 26], although not universally [10]. However, once the important environmental attribute of 

choice is allowed, the weight-price relationship is no longer clear even a priori because weight 

will depend on total intake, which depends on consumption of both foods; that is the degree of 

substitution and own and cross-price effects. In our experiments, we found that as the price of 

high fat food decreased, total intake and weight increased for both TUB-MUT and WT, but there 

were no significant differences between TUB-MUT and WT. This is in contrast to the results of 

Coyle, Strand, and Good [16], where the TUB-MUT weighed significantly more compared to the 

WT over the course of their study on ad lib feeding. Of note, those studies used male mice, 

which generally weigh more than females. Females, on the other hand, generally have more body 
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fat, and our results in this area (discussed below) do indicate a genotype difference. Overall, the 

weight response differences between TUB-MUT and WT in the ad lib setting versus a choice 

cost setting underscore the importance of the economic environment and the role choices can 

play in body weight related phenotypes. 

Although we did not find any differences in weight between the TUB-MUT and WT, 

there were significant differences in body fat percentage. The TUB-MUT responded significantly 

to the change in price and therefore showed a substantially higher body fat percentage. This 

outcome is consistent with the carcass fat content analysis performed by Coyle, Strand, and 

Good in their ad lib setting [16].   

The increasing body weight and body fat percentage, especially for the TUB-MUT, was 

not accompanied by any change in leptin or ghrelin levels, though there was a significant 

increase in the area under the glucose tolerance test curve for the TUB-MUT. As indicated in the 

introduction, we are not aware of other foraging/cost experiments that have looked at leptin, 

ghrelin, or glucose tolerance, but the diet-induced obesity literature has documented changes in 

all three of these phenotypes in ad lib settings [27, 28], again underscoring the need for more 

research on the interaction of economics, genotype responses, and phenotype outcomes. 

This research has answered calls for more analysis on behavioral economics and genetics 

by incorporating a key feature of economic decision-making: choice. Food choice is especially 

important for biological outcomes, as the outcomes may depend more on the composition of 

foods consumed rather than the actual intake of a single food. In addition, most choice/substitute 

research has focused on behavioral issues and effects rather than biological outcomes. Moving to 

studying the biological effects of economic factors is an important research area because many 
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government policies designed to fight obesity are economic policies, such as taxes on certain 

foods [29, 30], and these policies not only have direct effects but can also have indirect effects 

via their influence on the choices of alternative foods.  The complete efficacy and effectiveness 

of these policies in improving health cannot be fully appreciated until we understand not only the 

behavioral but the biological influences of choice on obesity.  In addition, neuroeconomic 

research that incorporates choice will give us a better understanding of how choices are actually 

made and the factors that affect choices.   
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Figure Legends 

Figure 1. Food consumption group means + S.E.  (A) high fat consumption, (B) low fat 
consumption, and (C) total consumption versus price change by genotype.  

Figure 2.  Body weight (A) and body fat (B) group means + S.E. versus price change by 
genotype. * P < .05 MUT vs. WT for the entire schedule. 

Figure 3. Changes in ghrelin (A) and leptin (B) group mean + S.E. versus price change by 
genotype.  

Figure 4. Glucose tolerance tests versus price change by genotype.  Group mean blood glucose 
tolerance test curve versus price for WT (A) and MUT (B) . Group mean + 

 

S.E. changes in area 
under glucose tolerance test curve versus price change by genotype (C). * P < .05 MUT at 40 vs. 
MUT at 10. 
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