4 research outputs found

    The SPHERE view of three interacting twin disc systems in polarized light

    Get PDF
    Dense stellar environments as hosts of ongoing star formation increase the probability of gravitational encounters among stellar systems during the early stages of evolution. Stellar interaction may occur through non-recurring, hyperbolic, or parabolic passages (a so-called 'fly-by'), through secular binary evolution, or through binary capture. In all three scenarios, the strong gravitational perturbation is expected to manifest itself in the disc structures around the individual stars. Here, we present near-infrared polarized light observations that were taken with the SPHERE/IRDIS instrument of three known interacting twin-disc systems: AS 205, EM∗ SR 24, and FU Orionis. The scattered light exposes spirals likely caused by the gravitational interaction. On a larger scale, we observe connecting filaments between the stars. We analyse their very complex polarized intensity and put particular attention to the presence of multiple light sources in these systems. The local angle of linear polarization indicates the source whose light dominates the scattering process from the bridging region between the two stars. Further, we show that the polarized intensity from scattering with multiple relevant light sources results from an incoherent summation of the individuals' contribution. This can produce nulls of polarized intensity in an image, as potentially observed in AS 205. We discuss the geometry and content of the systems by comparing the polarized light observations with other data at similar resolution, namely with ALMA continuum and gas emission. Collective observational data can constrain the systems' geometry and stellar trajectories, with the important potential to differentiate between dynamical scenarios of stellar interaction

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FU Orionis

    No full text
    We present Atacama Large Millimeter/submillimeter Array 12-m, 7-m, and Total Power Array observations of the FU Orionis outbursting system, covering spatial scales ranging from 160 to 25,000 au. The high-resolution interferometric data reveal an elongated ^12 CO(2–1) feature previously observed at lower resolution in ^12 CO(3–2). Kinematic modeling indicates that this feature can be interpreted as an accretion streamer feeding the binary system. The mass infall rate provided by the streamer is significantly lower than the typical stellar accretion rates (even in quiescent states), suggesting that this streamer alone is not massive enough to sustain the enhanced accretion rates characteristic of the outbursting class prototype. The observed streamer may not be directly linked to the current outburst, but rather a remnant of a previous, more massive streamer that may have contributed enough to the disk mass to render it unstable and trigger the FU Orionis outburst. The new data detect, for the first time, a vast, slow-moving carbon monoxide molecular outflow emerging from this object. To accurately assess the outflow properties (mass, momentum, and kinetic energy), we employ ^13 CO(2–1) data to correct for optical depth effects. The analysis indicates that the outflow corresponds to swept-up material not associated with the current outburst, similar to the slow molecular outflows observed around other FUor and Class I protostellar objects
    corecore