6,916 research outputs found
Semantic Autoencoder for Zero-Shot Learning
Existing zero-shot learning (ZSL) models typically learn a projection
function from a feature space to a semantic embedding space (e.g.~attribute
space). However, such a projection function is only concerned with predicting
the training seen class semantic representation (e.g.~attribute prediction) or
classification. When applied to test data, which in the context of ZSL contains
different (unseen) classes without training data, a ZSL model typically suffers
from the project domain shift problem. In this work, we present a novel
solution to ZSL based on learning a Semantic AutoEncoder (SAE). Taking the
encoder-decoder paradigm, an encoder aims to project a visual feature vector
into the semantic space as in the existing ZSL models. However, the decoder
exerts an additional constraint, that is, the projection/code must be able to
reconstruct the original visual feature. We show that with this additional
reconstruction constraint, the learned projection function from the seen
classes is able to generalise better to the new unseen classes. Importantly,
the encoder and decoder are linear and symmetric which enable us to develop an
extremely efficient learning algorithm. Extensive experiments on six benchmark
datasets demonstrate that the proposed SAE outperforms significantly the
existing ZSL models with the additional benefit of lower computational cost.
Furthermore, when the SAE is applied to supervised clustering problem, it also
beats the state-of-the-art.Comment: accepted to CVPR201
Electron confinement by laser-driven azimuthal magnetic fields during direct laser acceleration
A laser-driven azimuthal plasma magnetic field is known to facilitate
electron energy gain from the irradiating laser pulse. The enhancement is due
to changes in the orientation between the laser electric field and electron
velocity caused by magnetic field deflections. Transverse electron confinement
is critical for realizing this concept experimentally. We find that the phase
velocity of the laser pulse has a profound impact on the transverse size of
electron trajectories. The transverse size remains constant below a threshold
energy that depends on the degree of the superluminosity and it increases with
the electron energy above the threshold. This increase can cause electron
losses in tightly focused laser pulses. We show using 3D particle-in-cell
simulations that the electron energy gain can be significantly increased by
increasing laser power at fixed intensity due to the increased electron
confinement. This finding makes a strong case for designing experiments at
multi-PW laser facilities
Highly Efficient Regression for Scalable Person Re-Identification
Existing person re-identification models are poor for scaling up to large
data required in real-world applications due to: (1) Complexity: They employ
complex models for optimal performance resulting in high computational cost for
training at a large scale; (2) Inadaptability: Once trained, they are
unsuitable for incremental update to incorporate any new data available. This
work proposes a truly scalable solution to re-id by addressing both problems.
Specifically, a Highly Efficient Regression (HER) model is formulated by
embedding the Fisher's criterion to a ridge regression model for very fast
re-id model learning with scalable memory/storage usage. Importantly, this new
HER model supports faster than real-time incremental model updates therefore
making real-time active learning feasible in re-id with human-in-the-loop.
Extensive experiments show that such a simple and fast model not only
outperforms notably the state-of-the-art re-id methods, but also is more
scalable to large data with additional benefits to active learning for reducing
human labelling effort in re-id deployment
Semantic Graph for Zero-Shot Learning
Zero-shot learning aims to classify visual objects without any training data
via knowledge transfer between seen and unseen classes. This is typically
achieved by exploring a semantic embedding space where the seen and unseen
classes can be related. Previous works differ in what embedding space is used
and how different classes and a test image can be related. In this paper, we
utilize the annotation-free semantic word space for the former and focus on
solving the latter issue of modeling relatedness. Specifically, in contrast to
previous work which ignores the semantic relationships between seen classes and
focus merely on those between seen and unseen classes, in this paper a novel
approach based on a semantic graph is proposed to represent the relationships
between all the seen and unseen class in a semantic word space. Based on this
semantic graph, we design a special absorbing Markov chain process, in which
each unseen class is viewed as an absorbing state. After incorporating one test
image into the semantic graph, the absorbing probabilities from the test data
to each unseen class can be effectively computed; and zero-shot classification
can be achieved by finding the class label with the highest absorbing
probability. The proposed model has a closed-form solution which is linear with
respect to the number of test images. We demonstrate the effectiveness and
computational efficiency of the proposed method over the state-of-the-arts on
the AwA (animals with attributes) dataset.Comment: 9 pages, 5 figure
Robust Visual Tracking Revisited: From Correlation Filter to Template Matching
In this paper, we propose a novel matching based tracker by investigating the
relationship between template matching and the recent popular correlation
filter based trackers (CFTs). Compared to the correlation operation in CFTs, a
sophisticated similarity metric termed "mutual buddies similarity" (MBS) is
proposed to exploit the relationship of multiple reciprocal nearest neighbors
for target matching. By doing so, our tracker obtains powerful discriminative
ability on distinguishing target and background as demonstrated by both
empirical and theoretical analyses. Besides, instead of utilizing single
template with the improper updating scheme in CFTs, we design a novel online
template updating strategy named "memory filtering" (MF), which aims to select
a certain amount of representative and reliable tracking results in history to
construct the current stable and expressive template set. This scheme is
beneficial for the proposed tracker to comprehensively "understand" the target
appearance variations, "recall" some stable results. Both qualitative and
quantitative evaluations on two benchmarks suggest that the proposed tracking
method performs favorably against some recently developed CFTs and other
competitive trackers.Comment: has been published on IEEE TI
- …