2 research outputs found

    Compression of Vector Field Changing in Time

    Get PDF
    One of the problems connected with a real-time protein-ligand docking simulation is the need to store series of precomputed electrostatic force fields of a molecule changing in time. A single frame of the force field is a 3D array of floating point vectors and it constitutes approximately 180 MB of data. Therefore requirements on storage grow rapidly if several hundreds of such frames need to be stored. We propose a lossy compression method of such force field, based on audio and video coding, and we evaluate its properties and performance

    Haptic Rendering Based on RBF Approximation from Dynamically Updated Data

    Get PDF
    In this paper, an extension of our previous research focused on haptic rendering based on interpolation from precomputed data is presented. The technique employs the radial-basis function (RBF) interpolation to achieve the accuracy of the force response approximation, however, it assumes that the data used by the interpolation method are generated on-the-fly during the haptic interaction. The issue caused by updating the RBF coefficients during the interaction is analyzed and a force-response smoothing strategy is proposed
    corecore