38 research outputs found
Some Significant Trends in Textile Bleaching
The article highlights some recent trends in the bleaching of textile materials. An attempt has been made to compare the effect of electrochemical bleaching with conventional bleaching of cotton. Electric current is used in the preparation of a bleaching agent to replace bleaching powder. The sodium hypochlorite generated from electrolyte cell is sufficient to produce powerful bleaching agent with available chlorine. Electrochemical bleaching with sodium hypochlorite offers numerous advantages like prevention of effluent problem, economy, reliability, cleanliness, and convenience in working. Attempts have been made to use sodium perborate as a bleaching agent with potassium persulphate as an activator at lower temperature in combined pre treatment of cotton fabric. Experimental trials have been designed by using taguchi technique. This bleaching technique promises to be eco-friendly process. In yet another interesting work, effort has been taken to bleach the scoured cotton fabric with sodium perborate as bleaching agent and tetreacetyl ethylenediamine as bleaching activator. The concentrations of these chemicals, temperature and time of the treatment have been varied. The utilization of hydrogen peroxide is much higher as compared with that of conventional bleaching process. Other advantages include less requirement of water and energy, thereby satisfying needs of eco-friendly process, lesser loss in weight, tearing strength, and tensile strength, in comparison with conventional bleaching process without compromising whiteness index
Cotton in the new millennium: advances, economics, perceptions and problems
Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear.
This issue of Textile Progress aims to:
i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered.
ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade.
iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included.
iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre