21 research outputs found

    Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non‐small cell lung cancer

    Get PDF
    Abstract Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non‐small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16‐C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI‐resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA‐approved anti‐obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo. Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI‐resistant EGFR mutant NSCLC patients

    Octreotide functionalized nano-contrast agent for targeted magnetic resonance imaging

    No full text
    Reversible addition-fragmentation chain transfer (RAFT) polymerization has been employed to synthesize branched block copolymer nanoparticles possessing 1,4,7,10-tetraazacyclododecane-N,N,′N,N,‴-tetraacetic acid (DO3A) macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery. These polymeric nanoparticles have been chelated with Gd and applied as magnetic resonance imaging (MRI) nanocontrast agents. This nanoparticle system has an r relaxivity of 8.3 mM s, which is 3 times the r of commercial gadolinium-based contrast agents (GBCAs). The in vitro targeted binding efficiency of these nanoparticles shows 5 times greater affinity to somatostatin receptor type 2 (SSTR2) with K = 77 pM (compared to somatostatin with K = 0.385 nM). We have also evaluated the tumor targeting molecular imaging ability of these branched copolymer nanoparticle in vivo using nude/NCr mice bearing AR42J rat pancreatic tumor (SSTR2 positive) and A549 human lung carcinoma tumor (SSTR2 negative) xenografts

    Granzyme B PET Imaging in Response to In Situ Vaccine Therapy Combined with αPD1 in a Murine Colon Cancer Model

    No full text
    Immune checkpoint inhibitors (ICIs) block checkpoint receptors that tumours use for immune evasion, allowing immune cells to target and destroy cancer cells. Despite rapid advancements in immunotherapy, durable response rates to ICIs remains low. To address this, combination clinical trials are underway assessing whether adjuvants can enhance responsiveness by increasing tumour immunogenicity. CpG-oligodeoxynucleotides (CpG-ODN) are synthetic DNA fragments containing an unmethylated cysteine-guanosine motif that stimulate the innate and adaptive immune systems by engaging Toll-like receptor 9 (TLR9) present on the plasmacytoid dendritic cells (pDCs) and B cells. Here, we have assessed the ability of AlF-mNOTA-GZP, a peptide tracer targeting granzyme B, to serve as a PET imaging biomarker in response to CpG-ODN 1585 in situ vaccine therapy delivered intratumourally (IT) or intraperitoneally (IP) either as monotherapy or in combination with αPD1. [18F]AlF-mNOTA-GZP was able to differentiate treatment responders from non-responders based on tumour uptake. Furthermore, [18F]AlF-mNOTA-GZP showed positive associations with changes in tumour-associated lymphocytes expressing GZB, namely GZB+ CD8+ T cells, and decreases in suppressive F4/80+ cells. [18F]AlF-mNOTA-GZP tumour uptake was mediated by GZB expressing CD8+ cells and successfully stratifies therapy responders from non-responders, potentially acting as a non-invasive biomarker for ICIs and combination therapy evaluation in a clinical setting

    Imaging Effector Memory T-Cells Predicts Response to PD1-Chemotherapy Combinations in Colon Cancer

    No full text
    Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI–chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo

    Imaging Memory T-Cells Stratifies Response to Adjuvant Metformin Combined with αPD-1 Therapy

    No full text
    The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many combinations exacerbate the immunogenic response elicited by ICIs and can lead to adverse immune-related events. Metformin, a widely used type 2 diabetes drug is an ideal candidate to repurpose as it has a good safety profile and studies suggest that metformin can modulate the tumour microenvironment, promoting a favourable environment for T cell activation but has no direct action on T cell activation on its own. In the current study we used PET imaging with [18F]AlF-NOTA-KCNA3P, a radiopharmaceutical specifically targeting KV1.3 the potassium channel over-expressed on active effector memory T-cells, to determine whether combining PD1 with metformin leads to an enhanced immunological memory response in a preclinical colorectal cancer model. Flow cytometry was used to assess which immune cell populations infiltrate the tumours in response to the treatment combination. Imaging with [18F]AlF-NOTA-KCNA3P demonstrated that adjuvant metformin significantly improved anti-PD1 efficacy and led to a robust anti-tumour immunological memory response in a syngeneic colon cancer model through changes in tumour infiltrating effector memory T-cells

    Non-invasive multimodality imaging directly shows TRPM4 inhibition ameliorates stroke reperfusion injury

    No full text
    The transient receptor potential melastatin 4 (TRPM4) channel has been suggested to play a key role in the treatment of ischemic stroke. However, in vivo evaluation of TRPM4 channel, in particular by direct channel suppression, is lacking. In this study, we used multimodal imaging to assess edema formation and quantify the amount of metabolically functional brain salvaged after a rat model of stroke reperfusion. TRPM4 upregulation in endothelium emerges as early as 2 h post-stroke induction. Expression of TRPM4 channel was suppressed directly in vivo by treatment with siRNA; scrambled siRNA was used as a control. T2-weighted MRI suggests that TRPM4 inhibition successfully reduces edema by 30% and concomitantly salvages functionally active brain, measured by 18F-FDG-PET. These in vivo imaging results correlate well with post-mortem 2,3,5-triphenyltetrazolium chloride (TTC) staining which exhibits a 34.9% reduction in infarct volume after siRNA treatment. Furthermore, in a permanent stroke model, large areas of brain tissue displayed both edema and significant reductions in metabolic activity which was not shown in transient models with or without TRPM4 inhibition, indicating that tissue salvaged by TRPM4 inhibition during stroke reperfusion may survive. Evans Blue extravasation and hemoglobin quantification in the ipsilateral hemisphere were greatly reduced, suggesting that TRPM4 inhibition can improve BBB integrity after ischemic stroke reperfusion. Our results support the use of TRPM4 blocker for early stroke reperfusion.ASTAR (Agency for Sci., Tech. and Research, S’pore)NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Published versio
    corecore