31 research outputs found
Mechanism of photoluminescence enhancement and quenching in Nd2O3 nanoparticles-ferroelectric liquid crystal nanocomposites
The mechanism of photoluminescence enhancement and quenching in np-Nd2O3: FLC nanocomposites has been explored in the current study by UV-Vis and photoluminescence (PL) spectroscopy techniques. UV-Vis absorption spectra of Nd2O3 NPs in the 200-800 nm range shows two absorptions at 248 nm and 292 nm whereas pure FLC gives a broad absorption in the 265 nm to 348 nm region. PL emission intensity of np-Nd2O3: FLC composites recorded at 248 nm excitation wavelength where Nd2O3 NPs show intense emission, increases with gradually increasing the concentration of NPs up to 8 mu l. This enhancement in PL intensity without blue/red shifting the FLC's emission band was attributed to the up-conversion of doped Nd3+ ions and transfer of excitation energy to liquid crystal molecules. When excited with 248 nm, the Nd3+ ground state I-4(9/2) absorption excites electrons to a higher excited state (2)G(5/2). The excited Nd3+ ions in (2)G(5/2) level relax non-radiatively to the metastable H-2(11/2) state and then re-excites to an unstable (4)G(11/2) level. The electrons populated in (4)G(11/2) release energy either radiatively to different defect energy levels in the visible region or transfers this excitation energy to liquid crystal molecules which resulted into the enhancement in PL emission intensity. On the other hand, emission spectra at 303, 323, 333, 343 nm excitation wavelengths exhibit quenching of all emission bands in np-Nd2O3: FLC composites due to the stress induced structural disordering by the Nd2O3 NPs in the FLC matrix and creation of non-radiative channels in the system
Mechanism of visible-light-driven photocatalytic degradation of endosulfan pesticide by gold nanoparticles
Spherical shaped gold nanoparticles (GNPs) of size around similar to 9 nm were successfully used for photocatalytic degradation of hazardous endosulfan (ES) pesticide. GNPs absorb sunlight at ambient condition in aqueous medium to enhance localized surface plasmon resonance (LSPR) which initiate hydrolysis, oxidation and reduction chemical reactions for the mineralization of ES molecules. Infrared transmittance spectra of GNPs treated ES solutions revealed formation of amorphous carbon and hydrocarbon as final reaction products indicating the nearly complete mineralization of ES as evidenced from their TEM images also. The disappearance of chloro carbon and sulphite functional groups peaks of ES in IR transmittance spectra confirmed their degradation. TEM images also support the optical absorption spectra consisting of inter-band and LSPR bands pertaining to individual and clustered GNPs ensembles. The redshift in LSPR absorption peak positions along minor and major axis of clustered GNPs ensembles is attributed to the change in GNPs polarizability on interaction with the electric component of visible light. The chemical reaction pathway for ES molecule degradation by the photocatalytic GNPs has been proposed in the light of inferences drawn from TEM images, IR transmittance and optical absorption spectra
Evolution of excitation wavelength dependent photoluminescence in nano-CeO2 dispersed ferroelectric liquid crystals
The optical properties of nano-ceria (nano-CeO2) dispersed ferroelectric liquid crystals (FLCs) have been investigated by excitation wavelength dependent photoluminescence (PL) spectroscopy. The PL spectra of nano-ceria exhibited a strong excitation wavelength dependence in the 255-370 nm range. The red shift in the violet emission band of ceria i.e. from 368 nm to 396 nm with increasing excitation wavelength, has been attributed to the recombination of electrons trapped in the defect band and the deeply trapped holes in oxygen vacancies. This excitation wavelength dependence of ceria has noticeably been manifested in the PL response of FLC-CeO2 nanocomposites as well. PL emission recorded at an excitation wavelength where host and guest materials show intense emission, i.e. 340 nm, exhibits a quenching effect connected to the overlapping of emission and absorption bands of the host FLC and guest ceria NPs respectively. No blue/red shift in the spectral energy band was observed at 310 and 340 nm excitations. On the other hand, emission spectra at a lower excitation wavelength followed a reverse trend: an increase in the emission intensity, with a large blue shift in spectral energy band. The mechanisms involved in the changes of the PL spectrum of FLC-ceria nanocomposites with varying ceria concentration and excitation wavelengths are discussed in detail
Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI).
METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate.
FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally.
INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support.
FUNDING: Bill & Melinda Gates Foundation
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Dielectric relaxation and electro-optic response in nano-ceria dispersed ferroelectric liquid crystal nanocomposites: effect of structural deformation and lattice straining
The current investigations deal with the effect of concentration of CeO2 nanoparticles (NPs) on physical properties of ferroelectric liquid crystal. Infrared transmission spectroscopy has been used to reveal the mechanism behind significant changes in dielectric behavior and electro-optic parameters of nanocomposites, for the first time, in correlation with structural deformation of functional group present in FLC and lattice straining induced by the NPs. The temperature and frequency dependence of dielectric permittivity exhibits a gradual increase in the dielectric constant with the addition of CeO2 NPs. An increase in the saturated spontaneous polarization (P-s) and switching at a lower bias was also observed in these nanocomposites. IR transmission peaks pertaining to the nC=O and nC-O stretching modes of FLC's ester (RCOORO) functional group showed a shift in the peak positions and a new weak intensity C=O bonded chiral group vibrational mode at 1718 cm(-1) was observed after ceria dispersion. These variations are attributed to the coordinated bond formation between planar polar ester C=O group and Ce3+ ion through the lone pairs of oxygen and the stress induced by CeO2 NPs present in the interstitial sites of FLC's polar component. These structural distortions facilitate the easy polarizability of FLC molecules with an enhancement in the dielectric constant and Ps values. In addition, the loss profile demonstrates an increase in the frequency and magnitude of ion linked relaxation and Goldstone mode after ceria dispersion, whereas losses on their lower frequency side decreases
Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling
The variation in optical texture, electro-optic, and dielectric properties of iron oxide nanoparticles (NPs) embedded ferroelectric liquid crystal (FLC) with respect to change in temperature and electrical bias conditions are demonstrated in the current investigations. Improvement in spontaneous polarization and response time in nanocomposites has been attributed to magneto-electric (ME) coupling resulting from the strong interaction among the ferromagnetic nanoparticle's exchange field (due to unpaired e(-)) and the field of liquid crystal molecular director. Electron paramagnetic resonance spectrum of FLC material gives a broad resonance signal with superimposed components indicating the presence of a source of spin. This paramagnetic behavior of host FLC material had been a major factor in strengthening the guest host interaction by giving an additional possibility of (a) spin-spin interaction and (b) interactions between magnetic-dipole and electric-dipole moments (ME effects) in the composite materials. Furthermore, the phenomenon of dielectric and static memory effect in these composites are also observed which yet again confirms the coupling of magnetic NP's field with FLC's director orientation. We therefore believe that such advanced soft materials holding the optical and electrical properties of conventional LCs with the magnetic and electronic properties of ferromagnetic nanoparticles are going to play a key role in the development of futuristic multifunctional optical devices
Immunocytochemistry versus nucleic acid amplification in fine needle aspirates and tissues of extrapulmonary tuberculosis
Background: Immunocytochemistry (ICC) is an established routine diagnostic adjunct to cytology and histology for tumor diagnosis but has received little attention for diagnosis of tuberculosis.
Aims: To have an objective method of direct visualization of mycobacteria or their products in clinical extrapulmonary tuberculosis (EPTB) specimens, immunocytochemical localization of M. tuberculosis antigen by staining with species specific monoclonal antibody to 38-kDa antigen of Mycobacterium tuberculosis complex.
Materials and Methods: Immunostaining with specific monoclonal antibody to 38-kDa antigen of Mycobacterium tuberculosis complex was done in fresh and archival fine needle aspirates and tissue granulomata of 302 cases of extrapulmonary tuberculosis and was compared with the molecular diagnostic i.e., nucleic amplification and conventional [Cytomorphology, Ziehl Neelsen (ZN) staining and culture] tests and 386 controls.
Results: Diagnostic indices by Bayesian analysis for all types of archival and fresh material varied from 64 to 76% in nucleic acid amplification (NAA) and 96 to 98% in ICC. There was no significant difference in the diagnostic indices of ZN staining and/ or ICC in fresh or archival material whereas the sensitivity of NAA differed significantly in fresh versus archival material both in cytology (71.4% vs 52.1%) and histology (51.1% vs 38.8%). ICC can be easily used on archival smears and formalin-fixed paraffin-embedded tissue sections with almost equal sensitivity and specificity as with fresh material, in contrast to NAA which showed significant difference in test results on archival and fresh material.
Conclusions: Low detection sensitivity of MTB DNA in archival material from known tuberculous cases showed the limitation of in-house NAA-based molecular diagnosis. ICC was found to be sensitive, specific and a better technique than NAA and can be used as an adjunct to conventional morphology and ZN staining for the diagnosis of EPTB in tissue granulomas
Complex impedance studies of low temperature synthesized fine grain PZT/CeO2 nanocomposites
Fine grain nanocomposites of (100 - x) PbZr0.52Ti0.48O3 - (x) CeO2 with x = 0.5, 1 and 2 wt%, were prepared and characterized for structural and microstructural changes. Addition of ceria nanoparticles resulted into a fine grain microstructure with average grain size ranging from 600 nm to 440 nm and a significant decrease in sintering temperature (similar to 200 degrees C). Size distribution profile, as analyzed by lognormal distribution function suggests a very narrow size distribution. X-ray diffraction analyses of sintered samples reveal that fine grain PZT/CeO2 nanocomposite could retain distorted tetragonal structure even with grain size as low as 440 nm. Further, complex impedance spectroscopy studies were performed to illustrate the electrical properties of bulk and grain boundary phases in fine grain ceramics. Two electrical processes in the impedance spectra at temperatures above 350 degrees C were attributed to bulk and grain boundary phase. Magnitude of grain boundary capacitance and corresponding transition was found to be strongly dependent on grain size of the system. Both bulk and grain boundary relaxation processes follows Arrhenius law
Dielectric and Polarization Properties of BaTio3 Nanoparticle/Ferroelectric Liquid Crystal Colloidal Suspension
We investigate the dielectric and polarization properties of a suspension of low concentration ferroelectric nanoparticles in ferroelectric liquid crystal (FLC) host. It is assumed that the particles do not disturb the liquid crystal alignment and the suspension macroscopically appears similar to the pure LC. It is found that the colloidal suspension exhibits dielectric memory and an enhancement in the spontaneous polarization values as compared to the pure LC. The effect is explained vis-à-vis the particles’ permanent polarization contribution that interacts with the LC molecules. We anticipate that these ferroelectric liquid crystalline (LC) nanocolloids can be used to improve the performance of liquid crystal displays and related optical communication applications