4,381 research outputs found
The Lambda_b lifetime in the light front quark model
The enhancement of the Lambda_b decay width relative to B decay one due to
the difference of Fermi motion effects in Lambda_b and B is calculated in the
light--front quark model with the simplifying assumption that Lambda_b consists
of the heavy quark and light scalar diquark. In order to explain the large
deviation from unity in the experimental result for tau(Lambda_b)/tau(B), it is
necessary that diquark be light and the ratio of the squares of the Lambda_b
and B wave functions at the origin be \le 1.Comment: final journal version to appear in JETP Letter
Recommended from our members
Determination of the hydrodynamic performance of marine propellers using fibre Bragg gratings
Downloading of the abstract is permitted for personal use only. A critical aspect in the design of marine propellers is their hydrodynamic performance which, when evaluated experimentally, requires a number of parameters to be monitored at the same time, i.e.The thrust and torque a propeller generates as well as the propeller shaft and vessel speed. In this investigation, three of those parameters are measured using Fibre Bragg Grating-based sensors, thus allowing for computationally derived performance values to be verified. For that purpose, open water tests were carried out where an instrumented propeller shaft was installed into a research vessel and measurements taken, evaluated and the results compared favorably with advanced computer-based simulations
Laboratory Measurement of the Pure Rotational Transitions of the HCNH+ and its Isotopic Species
The pure rotational transitions of the protonated hydrogen cyanide ion,
HCNH+, and its isotopic species, HCND+ and DCND+, were measured in the 107 -
482 GHz region with a source modulated microwave spectrometer. The ions were
generated in the cell with a magnetically confined dc-glow discharge of HCN
and/or DCN. The rotational constant B0 and the centrifugal distortion constant
D0 for each ion were precisely determined by a least-squares fitting to the
observed spectral lines. The observed rotational transition frequencies by
laboratory spectroscopy and the predicted ones are accurate in about 30 to 40
kHz and are useful as rest frequencies for astronomical searches of HCNH+ and
HCND+.Comment: 14 pages in TeX, 1 figures in JPE
A coupled drug kinetics-cell cycle model to analyse the response of human cells to intervention by topotecan
A model describing the response of the growth of single human cells in the absence and presence of the anti-cancer agent topotecan (TPT) is presented. The model includes a novel coupling of both the kinetics of TPT and cell cycle responses to the agent. By linking the models in this way, rather than using separate (disjoint) approaches, it is possible to illustrate how the drug perturbs the cell cycle. The model is compared to experimental in vitro cell cycle response data (comprising single cell descriptors for molecular and behavioural events), showing good qualitative agreement for a range of TPT dose levels
Relativistic quantum model of confinement and the current quark masses
We consider a relativistic quantum model of confined massive spinning quarks
and antiquarks which describes leading Regge trajectories of mesons. The quarks
are described by the Dirac equations and the gluon contribution is approximated
by the Nambu-Goto straight-line string. The string tension and the current
quark masses are the main parameters of the model. Additional parameters are
phenomenological constants which approximate nonstring short-range
contributions. Comparison of the measured meson masses with the model
predictions allows one to determine the current quark masses (in MeV) to be
. The chiral
model[23] makes it possible to estimate from here the - and -quark masses
to be ~ Mev and Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D
The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing
Teeth are often assumed to be optimal for their function, which allows researchers to derive dietary signatures from tooth shape. Most tooth shape analyses normalize for tooth size, potentially masking the relationship between relative food item size and tooth shape. Here, we model how relative food item size may affect optimal tooth cusp radius of curvature (RoC) during the fracture of brittle food items using a parametric finite-element (FE) model of a four-cusped molar. Morphospaces were created for four different food item sizes by altering cusp RoCs to determine whether optimal tooth shape changed as food item size changed. The morphospaces were also used to investigate whether variation in efficiency metrics (i.e. stresses, energy and optimality) changed as food item size changed. We found that optimal tooth shape changed as food item size changed, but that all optimal morphologies were similar, with one dull cusp that promoted high stresses in the food item and three cusps that acted to stabilize the food item. There were also positive relationships between food item size and the coefficients of variation for stresses in food item and optimality, and negative relationships between food item size and the coefficients of variation for stresses in the enamel and strain energy absorbed by the food item. These results suggest that relative food item size may play a role in selecting for optimal tooth shape, and the magnitude of these selective forces may change depending on food item size and which efficiency metric is being selected
Pan-Africanism: a contorted delirium or a pseudonationalist paradigm? Revivalist critique
This essaic-article goes against established conventions that there is anything ethno-cultural (and hence national) about the so-called African tribes. Drawing largely from the culture history of precolonial/prepolitical Africans—that is, the Bantu/Cushitic-Ethiopians (Azanians)—the author has demonstrated vividly that far from being distinct ethno-culture national communities, the so-called tribes of African states are better considered subculture groups, whose regional culture practices erstwhile paid tribute to their nation’s main culture center in Karnak. For example, using the culture symbols and practices of some local groups and linking them to the predynastic and dynastic Pharaonic periods, I argued that there is compelling evidence against qualifying Africa’s tribes as distinct ethno-culture national entities. In genuine culture context, I stressed that the Ritual of Resurrection and its twin culture process of the mummification of deceased indigenous Pharaohs tend to suggest that the object of the Bantu/Cushitic-Ethiopians national culture was life (in its eternal manifestation) and then resurrection later, and that there are recurring (culturally sanctioned) ethical examples among the culture custodians of these subculture groups that generally pay tribute to the overarching culture norm. Furthermore, the fact that the Ritual of Resurrection began in the Delta region and ended at the Sources of the Nile, where the spirit of the deceased indigenous Pharaohs was introduced into the spiritual world of their ancestors, contradicts conventional perceptions that ancient Egypt was a distinct national community isolated from precolonial/prepolitical Africa/Azania
Measuring in Decays
We consider the possibility of measuring both and in the KM unitarity triangle using the process . This decay mode has a higher branching fraction (O(1%)) than
the mode . We use the factorization assumption and heavy
hadron chiral perturbation theory to estimate the branching fraction and
polarization. The time dependent rate for can be
used to measure and . Furthermore, examination
of the mass spectrum may be the best way to experimentally find
the broad p-wave meson.Comment: Revtex, 28 pages, 7 figures, title changed, introduction expanded,
added references, details of calculations moved to the appendi
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Film Edge Nonlocal Spin Valves
Spintronics is a new paradigm for integrated digital electronics. Recently
established as a niche for nonvolatile magnetic random access memory (MRAM), it
offers new functionality while demonstrating low power and high speed
performance. However, to reach high density spintronic technology must make a
transition to the nanometer scale. Prototype devices are presently made using a
planar geometry and have an area determined by the lithographic feature size,
currently about 100 nm. Here we present a new nonplanar geometry in which one
lateral dimension is given by a film thickness, the order of 10 nm. With this
new approach, cell sizes can shrink by an order of magnitude. The geometry is
demonstrated with a nonlocal spin valve, where we study devices with an
injector/detector separation much less than the spin diffusion length.Comment: 10 pages, 3 figure
- …