108 research outputs found
Recommended from our members
NMR Investigation of Filler Effects of (Gamma) Irradiation in Polyurethane Adhesives
Polyurethane and polyester elastomers have been used for decades in a wide variety of applications, from seat cushion foams to prosthetic materials to high performance adhesives. Adiprene LW-520 is a polyurethane-based adhesive used in a number of U. S. Department of Energy applications. Several investigations have been performed to determine aging properties of polyurethanes. For example, {sup 1}H nuclear magnetic resonance (NMR) relaxation times have been shown to be sensitive to thermal degradation in polyurethanes. Detailed information about the exact nature of the oxidative thermal degradation in related materials has also been obtained via {sup 17}O and {sup 13}C NMR, with additional insight into morphological changes being obtained using {sup 1}H spin diffusion experiments. Radiation has also been shown to change the physical and mechanical properties of the polymers; in fact many polyurethanes are cured using radiation to affect the isocyanate and free radical reactive groups, thus controlling the properties such as thermal or solvent resistance
Recommended from our members
Chemically Specific Cellular Imaging of Biofilm Formation
This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this complicated organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition, this work on MRI measurements on polymers has lead to a paper entitled, ''Characterization of local deformation in filled-silicone elastomers subject to high strain NMR MOUSE and Magnetic Resonance Imaging as a diagnostic tool for detection of inhomogeneities''
Recommended from our members
Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR
It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed
Recommended from our members
Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR
Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement
Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production
Background
Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, “absent technological breakthroughs”, it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. Results
We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance. Conclusions
Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production. Keywords:
Switchgrass; Bioenergy; Biofuel; Feedstock; Cellulosic ethanol; PvMYB4; Transcription factor; Cell wall; Recalcitrance; Lignin; Hemicellulose; Pecti
Staff attitudes and the associations with treatment organisation, clinical practices and outcomes in opioid maintenance treatment
<p>Abstract</p> <p>Background</p> <p>In opioid maintenance treatment (OMT) there are documented treatment differences both between countries and between OMT programmes. Some of these differences have been associated with staff attitudes. The aim of this study was to 1) assess if there were differences in staff attitudes within a national OMT programme, and 2) investigate the associations of staff attitudes with treatment organisation, clinical practices and outcomes.</p> <p>Methods</p> <p>This study was a cross-sectional multicentre study. Norwegian OMT staff (<it>n </it>= 140) were invited to participate in this study in 2007 using an instrument measuring attitudes towards OMT. The OMT programme comprised 14 regional centres. Data describing treatment organisation, clinical practices and patient outcomes in these centres were extracted from the annual OMT programme assessment 2007. Centres were divided into three groups based upon mean attitudinal scores and labelled; "rehabilitation-oriented", "harm reduction-oriented" and "intermediate" centres.</p> <p>Results</p> <p>All invited staff (<it>n </it>= 140) participated. Staff attitudes differed between the centres. "Rehabilitation-oriented" centres had smaller caseloads, more frequent urine drug screening and increased case management (interdisciplinary meetings). In addition these centres had less drug use and more social rehabilitation among their patients in terms of long-term living arrangements, unemployment, and social security benefits as main income. "Intermediate" centres had the lowest treatment termination rate.</p> <p>Conclusions</p> <p>This study identified marked variations in staff attitudes between the regional centres within a national OMT programme. These variations were associated with measurable differences in caseload, intensity of case management and patient outcomes.</p
Testing and Assessment in an International Context: Cross- and Multi-cultural Issues
Globalisation, increase of migration flows, and the concurrent worldwide competitiveness impose rethinking of testing and assessment procedures and practices in an international and multicultural context. This chapter reviews the methodological and practical implications for psychological assessment in the field of career guidance. The methodological implications are numerous and several aspects have to be considered, such as cross-cultural equivalence or construct, method, and item bias. Moreover, the construct of culture by itself is difficult to define and difficult to measure. In order to provide non-discriminatory assessment, counsellors should develop their clinical cross-cultural competencies, develop more specific intervention strategies, and respect cultural differences. Several suggestions are given concerning translation and adaptation of psychological instruments, developing culture specific measures, and the use of these instruments. More research in this field should use mixed methods, multi-centric designs, and consider emic and etic psychological variables. A multidisciplinary approach might also allow identifying culture specific and ecological meaningful constructs. Non-discriminatory assessment implies considering the influence and interaction of personal characteristics and environmental factors
- …