69 research outputs found

    Advances of epigenetic editing

    Get PDF
    Epigenetic editing refers to the locus-specific targeting of epigenetic enzymes to rewrite the local epigenetic landscape of an endogenous genomic site, often with the aim of transcriptional reprogramming. Implementing clustered regularly interspaced short palindromic repeat-dCas9 greatly accelerated the advancement of epigenetic editing, yielding preclinical therapeutic successes using a variety of epigenetic enzymes. ,CRISPR/dCas9 Here, were review the current applications of these epigenetic editing tools in mammalians and shed light on biochemical improvements that facilitate versatile applications

    Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease

    Get PDF
    Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen -chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen -chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted

    Balance responses to lateral perturbations in human treadmill walking

    Get PDF
    During walking on a treadmill 10 human subjects (mean age 20 years) were perturbed by 100 ms pushes or pulls to the left or the right, of various magnitudes and in various phases of the gait cycle. Balance was maintained by (1) a stepping strategy (synergy), in which the foot at the next step is positioned a fixed distance outward of the 'extrapolated centre of mass', and (2) a lateral ankle strategy, which comprises a medial or lateral movement of the centre of pressure under the foot sole. The extrapolated centre of mass is defined as the centre of mass position plus the centre of mass velocity multiplied by a parameter related to the subject's leg length. The ankle strategy is the fastest, with a mechanical delay of about 200 ms (20% of a stride), but it can displace the centre of pressure no more than 2 cm. The stepping strategy needs at least 300 ms (30% of a stride) before foot placement, but has a range of 20 cm. When reaction time is sufficient, the magnitude of the total response is in good agreement with our hypothesis: mean centre of pressure (foot) position is a constant distance outward of the extrapolated centre of mass. If the reaction time falls short, a further correction is applied in the next step. In the healthy subjects studied here, no further corrections were necessary, so balance was recovered within two steps (one stride)

    Reciprocal regulation of endothelial-mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease

    Get PDF
    Endothelial-mesenchymal transition (EndMT) is a form of endothelial dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose endothelial functions, which contributes to the pathogenesis of intimal hyperplasia and atherosclerosis. The mitogen activated protein kinase 7 (MAPK7) inhibits EndMT and decreases the expression of the histone methyltransferase Enhancer-of-Zeste homologue 2 (EZH2), thereby maintaining endothelial quiescence. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). It is elusive how the crosstalk between MAPK7 and EZH2 is regulated in the endothelium and if the balance between MAPK7 and EZH2 is disturbed in vascular disease. In human coronary artery disease, we assessed the expression levels of MAPK7 and EZH2 and found that with increasing intima/media thickness ratio, MAPK7 expression decreased, whereas EZH2 expression increased. In vitro, MAPK7 activation decreased EZH2 expression, whereas endothelial cells deficient of EZH2 had increased MAPK7 activity. MAPK7 activation results in increased expression of microRNA (miR)-101, a repressor of EZH2. This loss of EZH2 in turn results in the increased expression of the miR-200 family, culminating in decreased expression of the dual-specificity phosphatases 1 and 6 who may repress MAPK7 activity. Transfection of endothelial cells with miR-200 family members decreased the endothelial sensitivity to TGF beta 1-induced EndMT. In endothelial cells there is reciprocity between MAPK7 signaling and EZH2 expression and disturbances in this reciprocal signaling associate with the induction of EndMT and severity of human coronary artery disease

    KRAB-Induced Heterochromatin Effectively Silences <i>PLOD2</i> Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation

    Get PDF
    Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression

    KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation

    Get PDF
    Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression

    KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and is Resilient to TGFß1 Activation

    Get PDF
    Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Kruppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFß1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFß1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFß1-induced and uninduced PLOD2 expression
    corecore