2,842 research outputs found
Relative Humidity and Activity Patterns of \u3cem\u3eIxodes scapularis\u3c/em\u3e (Acari: Ixodidae)
Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours P = 0.0037; 2010: P \u3c 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009
Correlating Pedestrian Flows and Search Engine Queries
An important challenge for ubiquitous computing is the development of
techniques that can characterize a location vis-a-vis the richness and
diversity of urban settings. In this paper we report our work on correlating
urban pedestrian flows with Google search queries. Using longitudinal data we
show pedestrian flows at particular locations can be correlated with the
frequency of Google search terms that are semantically relevant to those
locations. Our approach can identify relevant content, media, and
advertisements for particular locations.Comment: 4 pages, 1 figure, 1 tabl
Adverse Moisture Events Predict Seasonal Abundance of Lyme Disease Vector Ticks (\u3cem\u3eIxodes scapularis\u3c/em\u3e)
Background
Lyme borreliosis (LB) is the most commonly reported vector-borne disease in north temperate regions worldwide, affecting an estimated 300,000 people annually in the United States alone. The incidence of LB is correlated with human exposure to its vector, the blacklegged tick (Ixodes scapularis). To date, attempts to model tick encounter risk based on environmental parameters have been equivocal. Previous studies have not considered (1) the differences between relative humidity (RH) in leaf litter and at weather stations, (2) the RH threshold that affects nymphal blacklegged tick survival, and (3) the time required below the threshold to induce mortality. We clarify the association between environmental moisture and tick survival by presenting a significant relationship between the total number of tick adverse moisture events (TAMEs - calculated as microclimatic periods below a RH threshold) and tick abundance each year.
Methods
We used a 14-year continuous statewide tick surveillance database and corresponding weather data from Rhode Island (RI), USA, to assess the effects of TAMEs on nymphal populations of I. scapularis. These TAMEs were defined as extended periods of time (\u3e8 h below 82% RH in leaf litter). We fit a sigmoid curve comparing weather station data to those collected by loggers placed in tick habitats to estimate RH experienced by nymphal ticks, and compiled the number of historical TAMEs during the 14-year record.
Results
The total number of TAMEs in June of each year was negatively related to total seasonal nymphal tick densities, suggesting that sub-threshold humidity episodes \u3e8 h in duration naturally lowered nymphal blacklegged tick abundance. Furthermore, TAMEs were positively related to the ratio of tick abundance early in the season when compared to late season, suggesting that lower than average tick abundance for a given year resulted from tick mortality and not from other factors.
Conclusions
Our results clarify the mechanism by which environmental moisture affects blacklegged tick populations, and offers the possibility to more accurately predict tick abundance and human LB incidence. We describe a method to forecast LB risk in endemic regions and identify the predictive role of microclimatic moisture conditions on tick encounter risk
Dynamic Exponent of t-J and t-J-W Model
Drude weight of optical conductivity is calculated at zero temperature by
exact diagonalization for the two-dimensional t-J model with the two-particle
term, . For the ordinary t-J model with =0, the scaling of the Drude
weight for small doping concentration is
obtained, which indicates anomalous dynamic exponent =4 of the Mott
transition. When is switched on, the dynamic exponent recovers its
conventional value =2. This corresponds to an incoherent-to-coherent
transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc.
Jpn. vol.67, No.6 (1998
Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations
Triple sign reversal in the mixed-state Hall effect has been observed for the
first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip
at the third sign reversal is more pronounced for higher fields, which is
opposite to the case of the first sign reversal near T_c in most high-T_c
superconductors. These observations can be explained by a recent prediction in
which the third sign reversal is attributed to the energy derivative of the
density of states and to a temperature-dependent function related to the
superconducting energy gap. These contributions prominently appear in cases
where the mean free path is significantly decreased, such as our case of
ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let
Vortex-antivortex wavefunction of a degenerate quantum gas
A mechanism of a pinning of the quantized matter wave vortices by optical
vortices in a specially arranged optical dipole traps is discussed. The
vortex-antivortex optical arrays of rectangular symmetry are shown to transfer
angular orbital momentum and form the "antiferromagnet"-like matter waves. The
separable Hamiltonian for matter waves in pancake trapping geometry is proposed
and 3D-wavefunction is factorized in a product of wavefunctions of the 1D
harmonic oscillator and 2D vortex-antivortex quantum state. The 2D
wavefunction's phase gradient field associated via Madelung transform with the
field of classical velocities forms labyrinth-like structure. The macroscopic
quantum state composed of periodically spaced counter-rotating BEC superfluid
vortices has zero angular momentum and nonzero rotational energy.Comment: 11 pages, 5 figure
Superconductivity of the spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?
Pressure-induced superconductivity in a spin-ladder cuprate
SrCaCuO has not been studied on a microscopic level so
far although the superconductivity was already discovered in 1996. We have
improved high-pressure technique with using a large high-quality crystal, and
succeeded in studying the superconductivity using Cu nuclear magnetic
resonance (NMR). We found that anomalous metallic state reflecting the
spin-ladder structure is realized and the superconductivity possesses a
s-wavelike character in the meaning that a finite gap exists in the
quasi-particle excitation: At pressure of 3.5GPa we observed two excitation
modes in the normal state from the relaxation rate . One gives rise
to an activation-type component in , and the other -linear
component linking directly with the superconductivity. This gapless mode likely
arises from free motion of holon-spinon bound states appearing by hole doping,
and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let
- …