4 research outputs found
Crystallization, melting and morphology of PEO in PEO/MWNT-g-PMMA blends
Abstract The dispersion of multi-walled carbon nanotubes (MWNTs) in crystalline poly(ethylene oxide) (PEO) is significantly improved by grafting with poly(methyl methacrylate) (PMMA) on surface of MWNTs via emulsion reactions. The synthesized MWNTs-g-PMMA is soluble in solvents that can dissolve PMMA and is well dispersed in PEO. The effects of the MWNTs-g-PMMA on PEO crystallization and its use as a reinforcement for PEO are investigated using DMA, DSC, POM, and SAXS. DMA data show that the PEO/MWNTs-g-PMMA blends containing up to 30 wt% MWNTs-g-PMMA are compatible. DSC data show the crystallization of PEO is enhanced by the MWNTs-g-PMMA, accompanying with a decreased thickness of crystal layers and an increased thickness of amorphous layers of the PEO lamellar stacks, in combination with SAXS data.
Crystallization kinetics study of poly(L-lactic acid)/Carbon Nanotubes Nanocomposites
[[abstract]]Effects of carbon nanotubes (CNT) on the isothermal crystallization kinetics of poly(L-lactic acid) (PLLA) were quantitatively investigated using the Avrami equation and the secondary nucleation theory of Lauritzen and Hoffman. CNT via grafting modification with PLLA could well disperse in the PLLA matrix and give significantly enhanced crystallization rate and crystallinity of PLLA as analyzed by differential scanning calorimetry and polarized optical microscopy. Analysis of isothermal crystallization kinetics using the Avrami equation demonstrated that CNT significantly enhanced the bulk crystallization of PLLA. Analysis of spherulite growth kinetics using the secondary nucleation theory of Lauritzen and Hoffman found that CNT could expand the temperature range of the crystallization regime III of PLLA. Values of the nucleation constant (Kg) in crystallization regimes III and II of PLLA both increased with increasing CNT contents. The Kg III/Kg II ratios were found to be close to the theoretical value 2 but were not clearly found to depend on the CNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 983–989, 201
Data_Sheet_1_12-week curcumin supplementation may relieve postexercise muscle fatigue in adolescent athletes.PDF
IntroductionHigh-intensity exercise causes oxidative stress, muscle soreness, and muscle fatigue, leading to reduced exercise performance. Curcumin possesses antioxidative and anti-inflammatory properties and thus alleviates postexercise damage. Therefore, this study evaluated the effect of curcumin on athletes’ postexercise recovery.MethodsA non-randomized prospective cohort investigation was done. We recruited middle and high school athletes engaged in wrestling, soccer, and soft tennis. During the 12-week daily exercise training, the participants were assigned to receive curcumin supplementation (curcumin group) or not (control group). Body composition, exercise performance, inflammatory factors, muscle fatigue, and muscle soreness were recorded at the baseline and end of the study. We used the Mann–Whitney U test to compare the participants’ demographics, such as age, height, weight, and training years. The Wilcoxon test was used to compare the differences between the groups before and after curcumin supplementation.ResultsOf 28 participants (21 men and 7 women, with a mean age of 17 years), 13 were in the curcumin group and 15 in the control group. A significant decrease in muscle fatigue and muscle soreness scores was observed in the curcumin group after 12 weeks. Moreover, a significant decrease in the 8-hydroxy-2 deoxyguanosine level and a significant increase in basic metabolic rate and fat-free mass were observed in the curcumin group.ConclusionCurcumin can reduce muscle fatigue and soreness after exercise, indicating its potential to alleviate postexercise damage. It could be considered to cooperate with nutritional supplements in regular training in adolescent athletes.</p