10 research outputs found
Archway for Radiation and Micrometeorite Occurrence Resistance
The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is required. During the regolith filling process, an inflatable structure under the arch supports the mass of the regolith, but once regolith filling is complete the catenary arch formed by the regolith and the jacket becomes self-supporting and the inflatable can be deflated and removed. When complete, habitat modules and equipment can be moved into the protected cavity under the arch. ARMOR is a nearterm system that would provide a reliable and robust lightweight structure technology to support large lunar habitats, drastically lower launch mass, and improve efficient volume use, reducing launch costs
Dedicated Deployable Aerobraking Structure
A dedicated deployable aerobraking structure concept was developed that significantly increases the effective area of a spacecraft during aerobraking by up to a factor of 5 or more (depending on spacecraft size) without substantially increasing total spacecraft mass. Increasing the effective aerobraking area of a spacecraft (without significantly increasing spacecraft mass) results in a corresponding reduction in the time required for aerobraking. For example, if the effective area of a spacecraft is doubled, the time required for aerobraking is roughly reduced to half the previous value. The dedicated deployable aerobraking structure thus enables significantly shorter aerobraking phases, which results in reduced mission cost, risk, and allows science operations to begin earlier in the mission
Deployment of a Curved Truss
Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e.g. curvature) of the truss
Device Acquires and Retains Rock or Ice Samples
The Rock Baller is a sample acquisition tool that improves sample retention. The basic elements of the Rock Baller are the tool rotation axis, the hub, the two jaws, and the cutting blades, which are located on each of the jaws. The entire device rotates about the tool rotation axis, which is aligned parallel to the nominal normal direction of the parent rock surface. Both jaws also rotate about the jaw axis, which is perpendicular to the tool rotation axis, at a rate much slower than the rotation about the tool rotation axis. This movement gradually closes the jaws into a nearly continuous hemispherical shell that encloses the sample as it is cut from the parent rock. When required the jaws are opened to release the sample. The hemispherical cutting method eliminates the sample retention problems associated with existing sample acquisition methods that employ conventional cylindrical cutting. The resulting samples are hemispherical, or nearly hemispherical, and as a result the aspect ratio (sample depth relative to sample radius) is essentially fixed. This fixed sample aspect ratio may be considered a drawback of the Rock Baller method, as samples with a higher aspect ratio (more depth, less width) may be considered more scientifically valuable because such samples would allow for a broader inspection of the geological record. This aspect ratio issue can be ameliorated if the Rock Baller is paired with a device similar to the Rock Abrasion Tool (RAT) used on the Mars Exploration Rovers. The RAT could be used to first grind into the surface of the parent rock, after which the Rock Baller would extract a sample from a depth inside the rock that would not have been possible without first using the RAT. Other potential applications for this technology include medical applications such as the removal of tissue samples or tumors from the body, particularly during endoscopic, laparoscopic, or thoracoscopic surgeries
Rockballer Sample Acquisition Tool
It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation
Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras
This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumergrade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultralightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-pl..